RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      행렬도에서 군집분석의 활용 = Applications of Cluster Analysis in Biplots

      한글로보기

      https://www.riss.kr/link?id=A105203844

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      행렬도 (biplot)는 이원표 자료행렬 (two-way data matrix)의 행과 열을 그래프에 동시에 나타내어 이들의 관계를 살피려는 다변량 그래프적 분석기법이다 (Gower와 Hand, 1996; 최용석, 2006, 1장). 그래프...

      행렬도 (biplot)는 이원표 자료행렬 (two-way data matrix)의 행과 열을 그래프에 동시에 나타내어 이들의 관계를 살피려는 다변량 그래프적 분석기법이다 (Gower와 Hand, 1996; 최용석, 2006, 1장). 그래프적 분석기법은 그 특성상 대용량 자료를 해석하는 데는 어려움이 따른다. 따라서, 자료를 효과적으로 줄일 수 있는 군집분석을 활용하여 원자료와 변수간의 행렬도가 아닌 각 군집과 변수간의 행렬도 분석을 수행함으로써, 기존의 행렬도에서 해석의 어려웠던 대용량 자료에 대한 해석이 가능하게 되며, 자료에 대한 정보를 쉽게 파악할 수 있는 장점을 가진다.

      더보기

      다국어 초록 (Multilingual Abstract)

      Biplots are the multivariate analogue of scatter plots. They approximate the multivariate distribution of a sample in a few dimensions, typically two, and they superimpose on this display representations of the variables on which the samples are measu...

      Biplots are the multivariate analogue of scatter plots. They approximate the multivariate distribution of a sample in a few dimensions, typically two, and they superimpose on this display representations of the variables on which the samples are measured(Gower and Hand, 1996, Chapter 1). And the relationships between the observations and variables can be easily seen. Thus, biplots are useful for giving a graphical description of the data. However, this method does not give some concise interpretations between variables and observations when the number of observations are large. Therefore, in this study, we will suggest to interpret the biplot analysis by applying the K-means clustering analysis. It shows that the relationships between the clusters and variables can be easily interpreted. So, this method is more useful for giving a graphical description of the data than using raw data.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼