RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Quantitative Conductivity Estimation Error due to Statistical Noise in Complex B1 + Map

      한글로보기

      https://www.riss.kr/link?id=A101605753

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In-vivo conductivity reconstruction using transmit field (B1+) information of MRI was proposed. We assessed theaccuracy of conductivity reconstruction in the presence of statistical noise in complex B1+ map and provided a parametricmodel of the conduc...

      In-vivo conductivity reconstruction using transmit field (B1+) information of MRI was proposed. We assessed theaccuracy of conductivity reconstruction in the presence of statistical noise in complex B1+ map and provided a parametricmodel of the conductivity-to-noise ratio value.
      Materials and Methods: The B1+ distribution was simulated for a cylindrical phantom model. By adding complex Gaussiannoise to the simulated B1+ map, quantitative conductivity estimation error was evaluated. The quantitative evaluationprocess was repeated over several different parameters such as Larmor frequency, object radius and SNR of B1+ map. Aparametric model for the conductivity-to-noise ratio was developed according to these various parameters.
      Results: According to the simulation results, conductivity estimation is more sensitive to statistical noise in B1+ phase thanto noise in B1+ magnitude. The conductivity estimate of the object of interest does not depend on the external object surroundingit. The conductivity-to-noise ratio is proportional to the signal-to-noise ratio of the B1+ map, Larmor frequency,the conductivity value itself and the number of averaged pixels. To estimate accurate conductivity value of the targetedtissue, SNR of B1+ map and adequate filtering size have to be taken into account for conductivity reconstruction process.
      In addition, the simulation result was verified at 3T conventional MRI scanner.
      Conclusion: Through all these relationships, quantitative conductivity estimation error due to statistical noise in B1+ map ismodeled. By using this model, further issues regarding filtering and reconstruction algorithms can be investigated for MREPT.

      더보기

      참고문헌 (Reference)

      1 "http://niremf.ifac.cnr.it/tissprop/"

      2 van den Bergen B, "Ultra fast electromagnetic field computations for RF multi-transmit techniques in high field MRI" 54 : 1253-1264, 2009

      3 Joines WT, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz" 21 : 547-550, 1994

      4 Gabriel S, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10Hz to 20 GHz" 41 : 2251-2269, 1996

      5 Schaefer M, "The complex dielectric spectrum of heart tissue during ischemia" 58 : 171-180, 2002

      6 Gudbjartsson H, "The Rician distribution of noisy MRI data" 34 : 910-914, 1995

      7 Voigt T, "T1 corrected B1mapping using multi-TR gradient echo sequences" 64 : 725-733, 2010

      8 Kim DH, "Simultaneous Electromagnetic Property Imaging using multiecho gradient echo" 3464-, 2012

      9 Voigt T, "Quantitative conductivity and permittivity imaging of the human brain using electric properties tomography" 66 : 456-466, 2011

      10 Voigt T, "Patient-individual local SAR determination: in vivo measurements and numerical validation" 68 : 1117-1126, 2012

      1 "http://niremf.ifac.cnr.it/tissprop/"

      2 van den Bergen B, "Ultra fast electromagnetic field computations for RF multi-transmit techniques in high field MRI" 54 : 1253-1264, 2009

      3 Joines WT, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz" 21 : 547-550, 1994

      4 Gabriel S, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10Hz to 20 GHz" 41 : 2251-2269, 1996

      5 Schaefer M, "The complex dielectric spectrum of heart tissue during ischemia" 58 : 171-180, 2002

      6 Gudbjartsson H, "The Rician distribution of noisy MRI data" 34 : 910-914, 1995

      7 Voigt T, "T1 corrected B1mapping using multi-TR gradient echo sequences" 64 : 725-733, 2010

      8 Kim DH, "Simultaneous Electromagnetic Property Imaging using multiecho gradient echo" 3464-, 2012

      9 Voigt T, "Quantitative conductivity and permittivity imaging of the human brain using electric properties tomography" 66 : 456-466, 2011

      10 Voigt T, "Patient-individual local SAR determination: in vivo measurements and numerical validation" 68 : 1117-1126, 2012

      11 Fallert MA, "Myocardial electrical-impedance mapping of iscemic sheep hearts and healing aneurysm" 87 : 199-207, 1993

      12 Zypman FR, "MRI electromagnetic field penetration in cylindrical objects" 26 : 161-175, 1996

      13 Haemmerich D, "In vivo electrical conductivity of hepatic tumours" 24 : 251-260, 2003

      14 Stollberger R, "Imaging of the active B1 field in vivo" 35 : 246-251, 1996

      15 Haacke EM, "Extraction of conductivity and permittivity using magnetic resonance imaging" 36 : 723-734, 1991

      16 Seo JK, "Error analysis of nonconstant admittivity for MR-based electric property imaging" 31 : 430-437, 2012

      17 Stogryn A, "Equations for calculating the dielectric constant of saline water" 19 : 733-736, 1971

      18 Katscher U, "Determination of electric conductivity and local SAR via B1 mapping" 28 : 1365-1374, 2009

      19 Bulumulla SB, "Conductivity and permittivity imaging at 3.0 T" 41B (41B): 13-21, 2012

      20 van Lier AL, "Comparing Electric Properties Tomography at 1.5, 3 and 7 T" 125-, 2011

      21 van Lier AL, "B1(+) phase mapping at 7 T and its application for in vivo electrical conductivity mapping" 67 : 552-561, 2012

      22 Sacolick LI, "B1 mapping by Bloch-Siegert shift" 63 : 1315-1322, 2010

      23 Morrell GR, "An analysis of the accuracy of magnetic resonance flip angle measurement methods" 55 : 6157-6174, 2010

      24 Yarnykh VL, "Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field" 57 : 192-200, 2007

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 계속평가 신청대상 (계속평가)
      2021-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      2020-12-01 평가 등재후보 탈락 (계속평가)
      2019-12-01 평가 등재후보로 하락 (계속평가) KCI등재후보
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-03-31 학술지명변경 한글명 : 대한자기공명의과학회지 -> Investigative Magnetic Resonance Imaging
      외국어명 : Journal of the Korean Society of Magnetic Resonance in Medicine -> Investigative Magnetic Resonance Imaging
      KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2010-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2009-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      2008-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      2007-01-01 평가 등재후보학술지 유지 (등재후보2차) KCI등재후보
      2006-06-23 학술지명변경 외국어명 : Journal of Korean Society of Magnetic Resonancein Medicine -> Journal of the Korean Society of Magnetic Resonance in Medicine KCI등재후보
      2006-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2004-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.03 0.03 0.02
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.03 0.03 0.178 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼