RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      Characterization of the isotropic-distortional hardening model and its application to commercially pure titanium sheets

      한글로보기

      https://www.riss.kr/link?id=A107443716

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>Commercially pure titanium sheets have been widely used in various industrial applications owing to their lightweight nature, superior formability, and excellent corrosion resistance. Previous s...

      <P><B>Abstract</B></P> <P>Commercially pure titanium sheets have been widely used in various industrial applications owing to their lightweight nature, superior formability, and excellent corrosion resistance. Previous studies showed that accurate modelling of material characteristics, such as anisotropic yield function and hardening, is essential for the simulation of sheet metal forming with titanium sheets. For example, the non-quadratic anisotropic yield function Yld2000-2d and the modified Kim–Tuan hardening model were used to model initial anisotropy and reproduce flow stress curves at large strains. However, even with these advanced constitutive models for describing the anisotropic behavior of sheet metals, further improvement is necessary to simulate anisotropy evolution, or distortional hardening, in pure titanium sheets. In this study, distortional hardening was experimentally measured under both uniaxial and balanced biaxial loading conditions. Moreover, the evolution of the Yld2000-2d function was modelled as a function of equivalent plastic work. For validation, the developed material models were applied in finite element simulations to analyse deformation behavior in uniaxial tension, hydraulic bulge, and punch-stretching tests. It was confirmed that this approach accurately described material response during these three tests.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Experimental observation of distortional hardening behaviour and three-stage deformation behavior for a pure titanium sheet. </LI> <LI> A procedure to reproduce these material behaviours for the tested material by using an evolutionary yld2000-2d yield function and modified Kim–Tuan hardening law. </LI> <LI> Simulation results of uniaxial tensile tests, hydraulic bulge test, and punch-stretching tests match well with experimental data. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼