Diabetic Retinopathy (DR) is a leading cause of blindness among adults in the western countries. Hyperglycemia is a condition, that induces apoptotic cell death in a variety of cell types in diabetes, but the mechanism remains unclear. The aim of the ...
Diabetic Retinopathy (DR) is a leading cause of blindness among adults in the western countries. Hyperglycemia is a condition, that induces apoptotic cell death in a variety of cell types in diabetes, but the mechanism remains unclear. The aim of the study is to understand the effects of high Glucose on Human Retinal Endothelial Cells. Retinal endothelial cells were cultured in Iscove`s Modified Dulbecco`s Medium (IMDM) containing 5, 25 and 50 mM Glu-cose, incubated for 24, 36 and 48 hours in humidified 5% CO2 incubator at 37℃. Human Retinal Endothelial Cell Line (HREC) were characterized for morphology with different treatment by phase contrast microscopic analysis. Number of dead and viable cells was counted by trypan blue exclusion and supported by MTT assay. The intracellular Hydrogen peroxide (H2O2), a Reactive Oxygen Species (ROS) generation in high glucose conditions was assessed by FOX II assay and apoptosis by caspase-3 assay. The high glucose treated cells undergoing DNA fragmentation was witnessed by Agarose gel electrophoresis. We found that the cells incubated with 25 and 50 mM glucose containing medium for 48 hours altered the morphology of the cell, induced apoptosis and DNA fragmentation. The dead cell number were high in 25 and 50 mM when compared to the cells incubated with 5 mM glucose for 24, 36, and 48 hours. Also, the H2O2 levels and the activity of caspase-3 were increased in high glucose treated cells. Conclusions/interpretation: Our results demonstrated that elevated glucose induces apoptosis in cultured HREC. The hyperglycemia-induced increase in apoptosis may be dependent on caspase activation. The association between ROS generation and caspase-3 activation on high glucose treated cells is yet to be investigated.