RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      리튬 이온 전지의 전기적 등가 회로에 관한 연속시간 및 이산시간 상태방정식 연구 = Continuous Time and Discrete Time State Equation Analysis about Electrical Equivalent Circuit Model for Lithium-Ion Battery

      한글로보기

      https://www.riss.kr/link?id=A106985004

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Estimating the accurate internal state of lithium ion batteries to increase their safety and efficiency is crucial. Various algorithms are used to estimate the internal state of a lithium ion battery, such as the extended Kalman filter and sliding mode observer. A state-space model is essential in using algorithms to estimate the internal state of a battery. Two principal methods are used to express the state-space model, namely, continuous time and discrete time. In this work, the extended Kalman filter is employed to estimate the internal state of a battery. Moreover, this work presents and analyzes the estimation performance of algorithms consisting of a continuous time state-space model and a discrete time state-space model through static and dynamic profiles.
      번역하기

      Estimating the accurate internal state of lithium ion batteries to increase their safety and efficiency is crucial. Various algorithms are used to estimate the internal state of a lithium ion battery, such as the extended Kalman filter and sliding mod...

      Estimating the accurate internal state of lithium ion batteries to increase their safety and efficiency is crucial. Various algorithms are used to estimate the internal state of a lithium ion battery, such as the extended Kalman filter and sliding mode observer. A state-space model is essential in using algorithms to estimate the internal state of a battery. Two principal methods are used to express the state-space model, namely, continuous time and discrete time. In this work, the extended Kalman filter is employed to estimate the internal state of a battery. Moreover, this work presents and analyzes the estimation performance of algorithms consisting of a continuous time state-space model and a discrete time state-space model through static and dynamic profiles.

      더보기

      참고문헌 (Reference)

      1 L. Jinyuan, "State-space equations and the first-phase algorithm for signal control fo single intersections" 12 : 231-235, 2007

      2 Y. Zheng, "State-of-charge inconsistency estimation of lithium-ion battery pack using mean-difference model and extended Kalman filter" 383 : 50-58, 2018

      3 Z. Yu, "State-of-charge estimation for lithium-ion batteries using a kalman filter based on local linearization" 8 : 7854-7873, 2015

      4 S. Yang, "State of charge estimation for lithium-ion battery with a temperature-compensated model" 10 : 1560-, 2017

      5 X. Yidan, "State of charge estimation for lithium-ion batteries based on adaptive dual kalman filter" 77 : 1255-1272, 2020

      6 H. He, "Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach" 4 : 582-598, 2011

      7 X. Ding, "An improved thevenin model of lithium-ion battery with high accuracy for electric vehicles" 254 : 2019

      8 J. Peng, "An improved state of charge estimation method based on cubature kalman filter for lithium-ion batteries" 253 : 2019

      9 J. Du, "An adaptive sliding mode observer for lithium-ion battery state of charge and state of health estimation in electric vehicles" 54 : 81-90, 2016

      10 B. Ning, "Adaptive sliding mode observers for lithium-ion battery state estimation based on parameters identified online" 153 : 732-742, 2018

      1 L. Jinyuan, "State-space equations and the first-phase algorithm for signal control fo single intersections" 12 : 231-235, 2007

      2 Y. Zheng, "State-of-charge inconsistency estimation of lithium-ion battery pack using mean-difference model and extended Kalman filter" 383 : 50-58, 2018

      3 Z. Yu, "State-of-charge estimation for lithium-ion batteries using a kalman filter based on local linearization" 8 : 7854-7873, 2015

      4 S. Yang, "State of charge estimation for lithium-ion battery with a temperature-compensated model" 10 : 1560-, 2017

      5 X. Yidan, "State of charge estimation for lithium-ion batteries based on adaptive dual kalman filter" 77 : 1255-1272, 2020

      6 H. He, "Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach" 4 : 582-598, 2011

      7 X. Ding, "An improved thevenin model of lithium-ion battery with high accuracy for electric vehicles" 254 : 2019

      8 J. Peng, "An improved state of charge estimation method based on cubature kalman filter for lithium-ion batteries" 253 : 2019

      9 J. Du, "An adaptive sliding mode observer for lithium-ion battery state of charge and state of health estimation in electric vehicles" 54 : 81-90, 2016

      10 B. Ning, "Adaptive sliding mode observers for lithium-ion battery state estimation based on parameters identified online" 153 : 732-742, 2018

      11 X. Chen, "A novel approach for state of charge estimation based on adaptive switching gain sliding mode observer in electric vehicles" 246 : 667-678, 2014

      12 A. Berrueta, "A comprehensive model for lithium-ion batteries : From the physical principles to an electrical model" 144 : 286-300, 2018

      13 Qiaoyan Chen, "A Novel Sliding Mode Observer for State of Charge Estimation of EV Lithium Batteries" 전력전자학회 16 (16): 1131-1140, 2016

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2000-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.17 0.17 0.2
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.21 0.23 0.361 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼