RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      On interval edge-coloring problem in hypergraphs

      한글로보기

      https://www.riss.kr/link?id=T14918955

      • 저자
      • 발행사항

        Suwon : 아주대학교, 2018

      • 학위논문사항

        Thesis(M.A.) -- 아주대학교 대학원 , 수학과 , 2018

      • 발행연도

        2018

      • 작성언어

        영어

      • KDC

        410 판사항(6)

      • DDC

        510 판사항(23)

      • 발행국(도시)

        경기도

      • 형태사항

        iv, 38 leaves : illustrations ; 26 cm

      • 일반주기명

        Adviser: 박보람
        Bibliography: leaves 36-37

      • 소장기관
        • 국립중앙도서관 국립중앙도서관 우편복사 서비스
        • 아주대학교 도서관 소장기관정보
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      An (proper) \textit{edge coloring} of a graph $G$ is a function $f:E(G)\rightarrow \mathbb{Z}$ so that no two edges sharing an end have the same value. A graph $G$ is \textit{interval edge-colorable} if there is an edge coloring of $G$ such that for any vertex of $G$, the colors of edges incident to the vertex are consecutive.
      This notion was introduced by Asratian and Kamalian in 1987, in a relation to a scheduling problem. And it has been intensively studied by many researchers, especially focused on a problem to determine if given bipartite graph is interval edge-colorable or not.

      In this thesis, we introduce an interval edge-coloring problem of a hypergraph and study its basic properties. We also give a necessary and sufficient condition for an $(n+1,n+1,n)$-regular tripartite 3-uniform hypergraph being interval $2n$-colorable.
      Additionally, we find some interval edge-colorable bipartite graphs, in a relation of the question by Petrosyan and Khachatrian (2014).
      번역하기

      An (proper) \textit{edge coloring} of a graph $G$ is a function $f:E(G)\rightarrow \mathbb{Z}$ so that no two edges sharing an end have the same value. A graph $G$ is \textit{interval edge-colorable} if there is an edge coloring of $G$ such that for a...

      An (proper) \textit{edge coloring} of a graph $G$ is a function $f:E(G)\rightarrow \mathbb{Z}$ so that no two edges sharing an end have the same value. A graph $G$ is \textit{interval edge-colorable} if there is an edge coloring of $G$ such that for any vertex of $G$, the colors of edges incident to the vertex are consecutive.
      This notion was introduced by Asratian and Kamalian in 1987, in a relation to a scheduling problem. And it has been intensively studied by many researchers, especially focused on a problem to determine if given bipartite graph is interval edge-colorable or not.

      In this thesis, we introduce an interval edge-coloring problem of a hypergraph and study its basic properties. We also give a necessary and sufficient condition for an $(n+1,n+1,n)$-regular tripartite 3-uniform hypergraph being interval $2n$-colorable.
      Additionally, we find some interval edge-colorable bipartite graphs, in a relation of the question by Petrosyan and Khachatrian (2014).

      더보기

      국문 초록 (Abstract)

      그래프 $G$의 변 색칠은 꼭짓점을 공유하는 두 변이 같은 값을 갖지 않도록 하는 $E(G)$에서 $\mathbb{Z}$로의 함수이다. 그래프 $G$의 모든 꼭짓점에 대해서, 그 꼭짓점과 인접한 변들에 부여된 값들이 연속이도록 하는 변 색칠이 존재한다면, 그래프 $G$가 변 구간 색칠 가능하다고 한다. 이 개념은 1987년 Asratian and Kamalian에 의하여 처음 소개되었으며, 많은 학자들이 이분그래프를 중심으로 이 문제에 대해서 연구해왔다.

      이 학위논문에서는, 하이퍼그래프의 변 구간 색칠 문제를 소개하고 기본적인 성질들에 대해서 연구하였다. 또한 $(n+1,n+1,n)$-정규 삼분 3-유니폼 하이퍼그래프가 변 구간 $2n$-색칠이 가능하기 위한 필요충분 조건을 주었다. 추가적으로 Petrosyan and Khachatrian(2014)에 의하여 제시된 이분그래프들 중 변 구간 색칠 가능한 이분그래프를 더 찾았다.
      번역하기

      그래프 $G$의 변 색칠은 꼭짓점을 공유하는 두 변이 같은 값을 갖지 않도록 하는 $E(G)$에서 $\mathbb{Z}$로의 함수이다. 그래프 $G$의 모든 꼭짓점에 대해서, 그 꼭짓점과 인접한 변들에 부여된 ...

      그래프 $G$의 변 색칠은 꼭짓점을 공유하는 두 변이 같은 값을 갖지 않도록 하는 $E(G)$에서 $\mathbb{Z}$로의 함수이다. 그래프 $G$의 모든 꼭짓점에 대해서, 그 꼭짓점과 인접한 변들에 부여된 값들이 연속이도록 하는 변 색칠이 존재한다면, 그래프 $G$가 변 구간 색칠 가능하다고 한다. 이 개념은 1987년 Asratian and Kamalian에 의하여 처음 소개되었으며, 많은 학자들이 이분그래프를 중심으로 이 문제에 대해서 연구해왔다.

      이 학위논문에서는, 하이퍼그래프의 변 구간 색칠 문제를 소개하고 기본적인 성질들에 대해서 연구하였다. 또한 $(n+1,n+1,n)$-정규 삼분 3-유니폼 하이퍼그래프가 변 구간 $2n$-색칠이 가능하기 위한 필요충분 조건을 주었다. 추가적으로 Petrosyan and Khachatrian(2014)에 의하여 제시된 이분그래프들 중 변 구간 색칠 가능한 이분그래프를 더 찾았다.

      더보기

      목차 (Table of Contents)

      • Contents
      • Abstract i
      • 1 Introduction 1
      • 1.1 Basic definitions and notations for graphs and hypergraphs 1
      • 1.2 Interval edge-coloring in graph 2
      • Contents
      • Abstract i
      • 1 Introduction 1
      • 1.1 Basic definitions and notations for graphs and hypergraphs 1
      • 1.2 Interval edge-coloring in graph 2
      • 1.3 Topics of the thesis 6
      • 1.3.1 Generalization to hypergraphs 6
      • 1.3.2 Interval edge-colorability of small bipartite graphs . . 8
      • 2 Interval edge-coloring in hypergraph 10
      • 2.1 Definition and Examples 10
      • 2.2 Interval edge-coloring on some regular hypergraph 11
      • 2.2.1 2-regular hypergraphs 12
      • 2.2.2 Tripartite 3-uniform hypergraphs 13
      • 3 Some small interval edge-colorable bipartite graphs 20
      • 3.1 ∆r,s,t 22
      • 3.2 F(r1, . . . , rn2+n+1) 24
      • 국문초록 38
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼