RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Experimental and numerical studies of wingtip and downwash effects on horizontal tail

      한글로보기

      https://www.riss.kr/link?id=A106037846

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Studying wing downwash, which is caused by the wingtip effect, and its influence on horizontal tail is important for aircraft design. In this work, wing downwash was investigated using experimental and numerical methods. Sets of main wings and horizon...

      Studying wing downwash, which is caused by the wingtip effect, and its influence on horizontal tail is important for aircraft design. In this work, wing downwash was investigated using experimental and numerical methods. Sets of main wings and horizontal tails were fixed in a tunnel test chamber. For determining the wingtip effect and the wing downwash affecting the horizontal tail, experiments were performed, in which the pressure distributions near the main wingtip and on the upper and lower surfaces of the tail were measured.
      These experimental models were used in numerical calculations by the solving of differential equations for viscous flows and use of a singularity method for potential flows. The singularity method can be applied to determine the wing lift, as indicated by comparisons between the experimental and numerical results of the pressure distribution on the wing. Moreover, the wingtip and wing downwash effects influencing the horizontal tail should be determined with use of experimental and numerical methods that solve differential equations of viscous flow. In addition to the results regarding the pressure distributions near the main wing and on the horizontal tail, the longitudinal velocity, downwash velocity, and downwash angle distributions in the main wing wake were analyzed. We also investigated the kinetic parameters of the flow in mixed zones between the main wing downwash and the tail upwash.

      더보기

      참고문헌 (Reference)

      1 A. Paziresh, "Wing-body and vertical tail interference effects on downwash rate of the horizontal tail in subsonic flow" 30 (30): 04017001-, 2017

      2 V. J. Rossov, "Validation of vortex-lattice method for loads on wings in lift-generated wakes" 32 (32): 1254-1262, 1995

      3 M. Hadidoolabi, "Supersonic flow over a pitching delta wing using surface pressure measurements and numerical simulations" 31 (31): 65-78, 2018

      4 T. B. N. Hoang, "Study of separation phenomenon in transonic flows produced by interaction between shock wave and boundary layer" 33 (33): 170-191, 2011

      5 D. F. Thomas Jr., "Static longitudinal and lateral stability characteristics at low speed of 45 degree Sweptback-midwing models" National Advisory Committee for Aeronautics, Langley Aeronautical Lab 1957

      6 J. Pan, "Reynolds-averaged Navier-Stokes simulations of airfoils and wings with ice shapes" 41 (41): 879-891, 2004

      7 M. Mahdi, "Prediction of wing downwash using CFD" 7 (7): 105-111, 2015

      8 E. Loth, "Numerical solution of the downwash associated with a blown-flap system" 24 (24): 170-175, 1987

      9 A. Grote, "New Results in Numerical and Experimental Fluid Mechanics VI" 26-35, 2007

      10 D. Keller, "New Results in Numerical and Experimental Fluid Mechanics IX" 13-22, 2014

      1 A. Paziresh, "Wing-body and vertical tail interference effects on downwash rate of the horizontal tail in subsonic flow" 30 (30): 04017001-, 2017

      2 V. J. Rossov, "Validation of vortex-lattice method for loads on wings in lift-generated wakes" 32 (32): 1254-1262, 1995

      3 M. Hadidoolabi, "Supersonic flow over a pitching delta wing using surface pressure measurements and numerical simulations" 31 (31): 65-78, 2018

      4 T. B. N. Hoang, "Study of separation phenomenon in transonic flows produced by interaction between shock wave and boundary layer" 33 (33): 170-191, 2011

      5 D. F. Thomas Jr., "Static longitudinal and lateral stability characteristics at low speed of 45 degree Sweptback-midwing models" National Advisory Committee for Aeronautics, Langley Aeronautical Lab 1957

      6 J. Pan, "Reynolds-averaged Navier-Stokes simulations of airfoils and wings with ice shapes" 41 (41): 879-891, 2004

      7 M. Mahdi, "Prediction of wing downwash using CFD" 7 (7): 105-111, 2015

      8 E. Loth, "Numerical solution of the downwash associated with a blown-flap system" 24 (24): 170-175, 1987

      9 A. Grote, "New Results in Numerical and Experimental Fluid Mechanics VI" 26-35, 2007

      10 D. Keller, "New Results in Numerical and Experimental Fluid Mechanics IX" 13-22, 2014

      11 사정환, "Low-Reynolds number flow computation for eppler 387 wing using hybrid DES/transition model" 대한기계학회 29 (29): 1837-1847, 2015

      12 J. Katz, "Low Speed Aerodynamics" Cambridge University Press 2001

      13 L. Smith, "Investigation of a modified low-drag body for an alternative wing-body-tail configuration" University of Pretoria 2017

      14 R. C. Nelson, "Flight Stability and Automatic Control" McGraw-Hill Education, Inc 1998

      15 M. H. Nguyen, "Experimental study of laminar separation phenomenon combining with numerical calculations" 33 (33): 95-104, 2011

      16 Mehran Masdari, "Experimental investigation of a supercritical airfoil boundary layer in pitching motion" 대한기계학회 31 (31): 189-196, 2017

      17 M. R. Soltani, "Effect of an end plate on surface pressure distributions of two swept wings" 30 (30): 1631-1643, 2017

      18 Ngoc T. B. Hoang, "Computational investigation of variation in wing aerodynamic load under effect of aeroelastic deformations" 대한기계학회 32 (32): 4665-4673, 2018

      19 T. B. N. Hoang, "Calculation of transonic flows around profiles with blunt and angled leading edges" 38 (38): 1-13, 2016

      20 T. B. N. Hoang, "Calculating the aerodynamics of vertical axis wind turbines" 34 (34): 169-184, 2012

      21 F. W. Riegels, "Aerofoil Sections" Butterworths & Co. Ltd 1961

      22 H. Schlichting, "Aerodynamics of the Airplane" McGraw-Hill, Inc 1979

      23 B. A. Haider, "Aerodynamic performance optimization for the rotor design of a hovering agricultural unmanned helicopter" 대한기계학회 31 (31): 4221-4226, 2017

      24 L. Gao, "Aerodynamic characteristics of a novel catapult launched morphing tandem-wing unmanned aerial vehicle" 9 (9): 1-15, 2017

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼