RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      분류기 앙상블 선택을 위한 혼합 유전 알고리즘 = Hybrid Genetic Algorithm for Classifier Ensemble Selection

      한글로보기

      https://www.riss.kr/link?id=A101434761

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      이 논문은 최적의 분류기 앙상블 선택을 위한 혼합 유전 알고리즘을 제안한다. 혼합 유전 알고리즘은 단순 유전알고리즘의 미세 조정력을 보완하기 위해 지역 탐색 연산을 추가한 것이다. 혼합 유전 알고리즘의 우수성을 입증하기 위해 단순 유전 알고리즘과 혼합 유전 알고리즘 각각을 비교 실험하였다. 또한 혼합 유전 알고리즘의 지역 탐색 연산으로 두 가지 방법(SSO: 순차 탐색 연산, CSO: 조합 탐색 연산)을 제안한다. 비교 실험 결과는 혼합 유전 알고리즘이 단순 유전 알고리즘에 비해 해를 탐색하는 능력이 우수하였다. 또한 분류기들의 상관관계를 고려한 CSO 방법이 SSO 방법보다 더 우수하였다.
      번역하기

      이 논문은 최적의 분류기 앙상블 선택을 위한 혼합 유전 알고리즘을 제안한다. 혼합 유전 알고리즘은 단순 유전알고리즘의 미세 조정력을 보완하기 위해 지역 탐색 연산을 추가한 것이다. ...

      이 논문은 최적의 분류기 앙상블 선택을 위한 혼합 유전 알고리즘을 제안한다. 혼합 유전 알고리즘은 단순 유전알고리즘의 미세 조정력을 보완하기 위해 지역 탐색 연산을 추가한 것이다. 혼합 유전 알고리즘의 우수성을 입증하기 위해 단순 유전 알고리즘과 혼합 유전 알고리즘 각각을 비교 실험하였다. 또한 혼합 유전 알고리즘의 지역 탐색 연산으로 두 가지 방법(SSO: 순차 탐색 연산, CSO: 조합 탐색 연산)을 제안한다. 비교 실험 결과는 혼합 유전 알고리즘이 단순 유전 알고리즘에 비해 해를 탐색하는 능력이 우수하였다. 또한 분류기들의 상관관계를 고려한 CSO 방법이 SSO 방법보다 더 우수하였다.

      더보기

      다국어 초록 (Multilingual Abstract)

      This paper proposes a hybrid genetic algorithm(HGA) for the classifier ensemble selection. HGA is added a local search operation for increasing the fine-turning of local area. This paper apply hybrid and simple genetic algorithms(SGA) to the classifier ensemble selection problem in order to show the superiority of HGA. And this paper propose two methods(SSO: Sequential Search Operations, CSO: Combinational Search Operations) of local search operation of hybrid genetic algorithm. Experimental results show that the HGA has better searching capability than SGA. The experiments show that the CSO considering the correlation among classifiers is better than the SSO.
      번역하기

      This paper proposes a hybrid genetic algorithm(HGA) for the classifier ensemble selection. HGA is added a local search operation for increasing the fine-turning of local area. This paper apply hybrid and simple genetic algorithms(SGA) to the classifie...

      This paper proposes a hybrid genetic algorithm(HGA) for the classifier ensemble selection. HGA is added a local search operation for increasing the fine-turning of local area. This paper apply hybrid and simple genetic algorithms(SGA) to the classifier ensemble selection problem in order to show the superiority of HGA. And this paper propose two methods(SSO: Sequential Search Operations, CSO: Combinational Search Operations) of local search operation of hybrid genetic algorithm. Experimental results show that the HGA has better searching capability than SGA. The experiments show that the CSO considering the correlation among classifiers is better than the SSO.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼