RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재후보 SCIE SCOPUS

      Numerical characterizations of a piezoelectric micromotor using topology optimization design

      한글로보기

      https://www.riss.kr/link?id=A104818599

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper presents the optimum load-speed diagram evaluation for a linear micromotor, including multitude cantilever piezoelectric bimorphs, briefly. Each microbeam in the mechanism can be actuated in both axial and flexural modes simultaneously. For this design, we consider quasi-static and linear conditions, and a relatively new numerical method called the smoothed finite element method (S-FEM) is introduced here. For this purpose, after finding an optimum volume fraction for piezoelectric layers through a standard numerical method such as quadratic finite element method, the relevant load-speed curves of the optimized micromotor are examined and compared by deterministic topology optimization (DTO) design. In this regard, to avoid the overly stiff behavior in FEM modeling, a numerical method known as the cell-based smoothed finite element method (CS-FEM, as a branch of S-FEM) is applied for our DTO problem. The topology optimization procedure to find the optimal design is implemented using a solid isotropic material with a penalization (SIMP) approximation and a method of moving asymptotes (MMA) optimizer. Because of the higher efficiency and accuracy of S-FEMs with respect to standard FEMs, the main micromotor characteristics of our final DTO design using a softer CS-FEM are substantially improved.
      번역하기

      This paper presents the optimum load-speed diagram evaluation for a linear micromotor, including multitude cantilever piezoelectric bimorphs, briefly. Each microbeam in the mechanism can be actuated in both axial and flexural modes simultaneously. For...

      This paper presents the optimum load-speed diagram evaluation for a linear micromotor, including multitude cantilever piezoelectric bimorphs, briefly. Each microbeam in the mechanism can be actuated in both axial and flexural modes simultaneously. For this design, we consider quasi-static and linear conditions, and a relatively new numerical method called the smoothed finite element method (S-FEM) is introduced here. For this purpose, after finding an optimum volume fraction for piezoelectric layers through a standard numerical method such as quadratic finite element method, the relevant load-speed curves of the optimized micromotor are examined and compared by deterministic topology optimization (DTO) design. In this regard, to avoid the overly stiff behavior in FEM modeling, a numerical method known as the cell-based smoothed finite element method (CS-FEM, as a branch of S-FEM) is applied for our DTO problem. The topology optimization procedure to find the optimal design is implemented using a solid isotropic material with a penalization (SIMP) approximation and a method of moving asymptotes (MMA) optimizer. Because of the higher efficiency and accuracy of S-FEMs with respect to standard FEMs, the main micromotor characteristics of our final DTO design using a softer CS-FEM are substantially improved.

      더보기

      참고문헌 (Reference)

      1 Ueha, S., "Ultrasonic Motors-Theory and Applications, In Monographs in Electrical and Electronic Engineering, 29" Clarendon Press 1993

      2 Bendsoe, M. P., "Topology optimization: theory, methods and applications" Springer 2003

      3 Kogl, M., "Topology optimization of smart structures : design of piezoelectric plate and shell actuators" 14 (14): 387-399, 2005

      4 Kang, Zh., "Topology optimization of bending actuators with multilayer piezoelectric Material" 19 : 075018-, 2010

      5 Silva, E. C. N., "Topology optimization applied to the design of linear piezoelectric motors" 14 (14): 309-322, 2003

      6 Liu, G. R., "Theoretical aspects of the smoothed finite element method(SFEM)" 71 (71): 902-930, 2007

      7 Choi, K. K., "Structural sensitivity analysis and optimization" Springer Science and Business Media, Inc. 2005

      8 Bordas, S. P. A., "Strain smoothing in FEM and XFEM" 88 (88): 1419-1443, 2010

      9 Sze, K. Y., "Stabilized plane and axisymmetric piezoelectric finite element models" 40 (40): 1105-1122, 2004

      10 Liu, G. R., "Smoothed finite element methods" CRC press, Taylor and Francis group 2010

      1 Ueha, S., "Ultrasonic Motors-Theory and Applications, In Monographs in Electrical and Electronic Engineering, 29" Clarendon Press 1993

      2 Bendsoe, M. P., "Topology optimization: theory, methods and applications" Springer 2003

      3 Kogl, M., "Topology optimization of smart structures : design of piezoelectric plate and shell actuators" 14 (14): 387-399, 2005

      4 Kang, Zh., "Topology optimization of bending actuators with multilayer piezoelectric Material" 19 : 075018-, 2010

      5 Silva, E. C. N., "Topology optimization applied to the design of linear piezoelectric motors" 14 (14): 309-322, 2003

      6 Liu, G. R., "Theoretical aspects of the smoothed finite element method(SFEM)" 71 (71): 902-930, 2007

      7 Choi, K. K., "Structural sensitivity analysis and optimization" Springer Science and Business Media, Inc. 2005

      8 Bordas, S. P. A., "Strain smoothing in FEM and XFEM" 88 (88): 1419-1443, 2010

      9 Sze, K. Y., "Stabilized plane and axisymmetric piezoelectric finite element models" 40 (40): 1105-1122, 2004

      10 Liu, G. R., "Smoothed finite element methods" CRC press, Taylor and Francis group 2010

      11 Sadeghbeigi Olyaie, M., "Reliability based topology optimization of a linear piezoelectric micromotor using the cell-based smoothed finite element method" 75 (75): 43-88, 2011

      12 Long, C. S., "Planar four node piezoelectric with drilling degrees of freedom" 65 (65): 1802-1830, 2006

      13 Donoso, A., "Optimization of piezoelectric bimorph actuators with active damping for static and dynamic loads" 38 (38): 171-183, 2009

      14 Bendsoe, M. P., "Optimal shape design as a material distribution problem" 1 (1): 193-202, 1989

      15 Sigmund, O., "On the design of compliant mechanisms using topology optimization" 25 (25): 495-526, 1997

      16 Begg, D. W., "On simultaneous optimization of smart structures-Part II : algorithms and examples" 184 (184): 25-37, 2000

      17 김재은, "Multi-physics interpolation for the topology optimization of piezoelectric systems" Elsevier BV 199 (199): 3153-3168, 2010

      18 Svanberg, K., "Method of moving asymptotes-a new method for structural optimization" 24 (24): 359-373, 1987

      19 Ohs, R. R., "Meshless analysis of piezoelectric devices" 27 (27): 23-36, 2001

      20 Bendsoe, M. P., "Material interpolations in topology optimization" 69 (69): 635-654, 1999

      21 Arora, J. S., "Introduction to optimum design. 2nd edition" Elsevier academic press 2004

      22 Bendsoe, M. P., "Generating optimal topologies in structural design using a homogenization method" 71 (71): 197-224, 1988

      23 Rozvany, G., "Generalized shape optimization without homogenization" 4 (4): 250-254, 1992

      24 Allik, H., "Finite element method for piezo-electric vibration" 2 (2): 151-157, 1970

      25 Carbonari, R. C., "Experimental and numerical characterization of piezoelectric mechanisms designed using topology optimization" 2 : 425-432, 2006

      26 Huang, X., "Evolutionary Topology Optimization of Continuum Structures Methods and Applications" John Wiley and Sons Ltd 2010

      27 Carbonari, R. C., "Design of piezoelectric multi-actuated microtools using topology optimization" 14 (14): 1431-1447, 2005

      28 Silva, R. C. N., "Design of piezocomposite materials and piezoelectric transducers using topology optimization-part III" 6 (6): 305-329, 1999

      29 Sigmund, O., "Design of Material Structures Using Topology Optimization" Technical University of Denmark 1994

      30 Chang, S. J., "Analysis of methods for determining electromechanical coupling coefficients of piezoelectric elements" 42 (42): 630-640, 1995

      31 Dai, K. Y., "An n-sided polygonal smoothed finite element method(nSFEM), for solid mechanics" 43 (43): 847-860, 2007

      32 Liu, G. R., "An edge-based smoothed finite element method(ES-FEM)for static, free and force vibration analyses of solids" 320 (320): 1100-1130, 2009

      33 Nguyen, X. H., "An edge-based smoothed finite element method for analysis of two-dimensional piezoelectric structures" 18 (18): 065015-, 2009

      34 Benjeddou, A., "Advances in piezoelectric finite element modeling of adaptive structural elements : a survey" 76 (76): 347-363, 2000

      35 Liu, G. R., "A theoretical study on the smoothed FEM(S-FEM)models : Properties, accuracy and convergence rates" 84 (84): 1222-1256, 2010

      36 Chen, J. S., "A stabilized conforming nodal integration for Galerkin meshfree methods" 50 : 435-466, 2001

      37 Liu, G. R., "A smoothed finite element method for mechanics problems" 39 (39): 859-877, 2007

      38 Liu, G. R., "A radial point interpolation method for simulation of two-dimensional piezoelectric structures" 12 (12): 171-180, 2003

      39 Friend, J., "A piezoelectric linear actuator formed from a multitude of bimorphs" 109 (109): 242-251, 2004

      40 Jensen, J. S., "A Note on Sensitivity Analysis of Linear Dynamic Systems with Harmonic Excitation" Department of Mechanical Engineering, Technical University of Denmark 2009

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2021 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-12-01 평가 등재 탈락 (해외등재 학술지 평가)
      2013-10-01 평가 SCOPUS 등재 (등재유지) KCI등재
      2011-11-01 학술지명변경 한글명 : 스마트 구조와 시스템 국제 학술지 -> Smart Structures and Systems, An International Journal KCI등재후보
      2011-01-01 평가 등재후보학술지 유지 (기타) KCI등재후보
      2007-06-12 학술지등록 한글명 : 스마트 구조와 시스템 국제 학술지
      외국어명 : Smart Structures and Systems, An International Journal
      KCI등재후보
      2007-06-12 학술지등록 한글명 : 컴퓨터와 콘크리트 국제학술지
      외국어명 : Computers and Concrete, An International Journal
      KCI등재후보
      2007-04-09 학회명변경 한글명 : (사)국제구조공학회 -> 국제구조공학회 KCI등재후보
      2005-06-16 학회명변경 영문명 : Ternational Association Of Structural Engineering And Mechanics -> International Association of Structural Engineering And Mechanics KCI등재후보
      2005-01-01 평가 SCIE 등재 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.17 0.44 1.04
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.97 0.88 0.318 0.18
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼