RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Air Pollution Data Visualization Method based on Google Earth and KML for Seoul Air Quality Monitoring in Real-time

      한글로보기

      https://www.riss.kr/link?id=A102392674

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In Seoul, Korea, air pollution data are available to the public as numeric values on the concentration of pollutants in the air on a webpage. The numeric information is not conducive to determining the air pollution level intuitively. To address this problem, this study developed and implemented a program for visualizing the air pollution level for six pollutants (i.e., sulfur dioxide (SO2), carbon monoxide (CO), ozone (O3), nitrogen dioxide (NO2), and two sizes of particulate matter (PM10 and PM2.5)) by obtaining real-time air pollution data using SK Planet Air Quality Request API and generating a keyhole markup language (KML) file defined to visualize the data on Google Earth intuitively. The KML file is linked to Google Earth using the Network Link feature to visualize the air pollution data for Seoul on the three-dimensional (3D) space. The visualized pollution data is expected to promote an intuitive understanding of the data compared to the existing numeric information.
      번역하기

      In Seoul, Korea, air pollution data are available to the public as numeric values on the concentration of pollutants in the air on a webpage. The numeric information is not conducive to determining the air pollution level intuitively. To address this ...

      In Seoul, Korea, air pollution data are available to the public as numeric values on the concentration of pollutants in the air on a webpage. The numeric information is not conducive to determining the air pollution level intuitively. To address this problem, this study developed and implemented a program for visualizing the air pollution level for six pollutants (i.e., sulfur dioxide (SO2), carbon monoxide (CO), ozone (O3), nitrogen dioxide (NO2), and two sizes of particulate matter (PM10 and PM2.5)) by obtaining real-time air pollution data using SK Planet Air Quality Request API and generating a keyhole markup language (KML) file defined to visualize the data on Google Earth intuitively. The KML file is linked to Google Earth using the Network Link feature to visualize the air pollution data for Seoul on the three-dimensional (3D) space. The visualized pollution data is expected to promote an intuitive understanding of the data compared to the existing numeric information.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. Introduction
      • 2. Paper Preparation
      • 2.1. KML (Keyhole Markup Language)
      • 2.2. Air Quality Request API
      • Abstract
      • 1. Introduction
      • 2. Paper Preparation
      • 2.1. KML (Keyhole Markup Language)
      • 2.2. Air Quality Request API
      • 2.3. Air Pollution Public Data
      • 3. Air Pollution Visualization
      • 3.1. Air Pollution Real-time Feeds
      • 3.2. KML Generator Program
      • 3.3. The Result of Air Pollution Visualization
      • 4. Conclusion
      • References
      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼