RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Wnt/β-Catenin Promotes the Osteoblastic Potential of BMP9 Through Down-Regulating Cyp26b1 in Mesenchymal Stem Cells

      한글로보기

      https://www.riss.kr/link?id=A108934515

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      BACKGROUND: All-trans retinoic acid (ATRA) promotes the osteogenic differentiation induced by bone morphogenetic protein 9 (BMP9), but the intrinsic relationship between BMP9 and ATRA keeps unknown. Herein, we investigated the effect of Cyp26b1, a cri...

      BACKGROUND: All-trans retinoic acid (ATRA) promotes the osteogenic differentiation induced by bone morphogenetic protein 9 (BMP9), but the intrinsic relationship between BMP9 and ATRA keeps unknown. Herein, we investigated the effect of Cyp26b1, a critical enzyme of ATRA degradation, on the BMP9-induced osteogenic differentiation in mesenchymal stem cells (MSCs), and unveiled possible mechanism through which BMP9 regulates the expression of Cyp26b1.
      METHODS: ATRA content was detected with ELISA and HPLC–MS/MS. PCR, Western blot, and histochemical staining were used to assay the osteogenic markers. Fetal limbs culture, cranial defect repair model, and micro–computed tomographic were used to evaluate the quality of bone formation. IP and ChIP assay were used to explore possible mechanism.
      RESULTS: We found that the protein level of Cyp26b1 was increased with age, whereas the ATRA content decreased.
      The osteogenic markers induced by BMP9 were increased by inhibiting or silencing Cyp26b1 but reduced by exogenous Cyp26b1. The BMP9-induced bone formation was enhanced by inhibiting Cyp26b1. The cranial defect repair was promoted by BMP9, which was strengthened by silencing Cyp26b1 and reduced by exogenous Cyp26b1. Mechanically, Cyp26b1 was reduced by BMP9, which was enhanced by activating Wnt/b-catenin, and reduced by inhibiting this pathway. b-catenin interacts with Smad1/5/9, and both were recruited at the promoter of Cyp26b1.
      CONCLUSIONS: Our findings suggested the BMP9-induced osteoblastic differentiation was mediated by activating retinoic acid signalling, viadown-regulating Cyp26b1. Meanwhile, Cyp26b1 may be a novel potential therapeutic target for the treatment of bone-related diseases or accelerating bone-tissue engineering.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼