잡음 분산 값은 SNR(signal-to-noise ratio) 추정이나 MMSE(minimum mean square error) 계산, 채널 임펄스 응답의 추정 등에 사용되는 중요한 파라미터이다. 채널이 시간에 따라 변하는 무선 통신 환경에서, ...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A82501892
2010
Korean
567
학술저널
167-170(4쪽)
0
상세조회0
다운로드국문 초록 (Abstract)
잡음 분산 값은 SNR(signal-to-noise ratio) 추정이나 MMSE(minimum mean square error) 계산, 채널 임펄스 응답의 추정 등에 사용되는 중요한 파라미터이다. 채널이 시간에 따라 변하는 무선 통신 환경에서, ...
잡음 분산 값은 SNR(signal-to-noise ratio) 추정이나 MMSE(minimum mean square error) 계산, 채널 임펄스 응답의 추정 등에 사용되는 중요한 파라미터이다. 채널이 시간에 따라 변하는 무선 통신 환경에서, 신호와 섞여 있는 잡음과 간섭 신호의 정확한 추정에는 그 한계가 있으며 이로 인해 발생하는 추정 오차는 수신기의 데이터 검출 성능을 저하시킨다. 훈련열을 이용하여 채널을 추정하였을 경우 추정된 채널 임펄스 응답 신호 중 다중 경로 신호는 소수에 불과하고 나머지 대부분의 계수는 잡음 성분만을 포함하는 신호이다. 이러한 특징을 이용하여 채널의 추정 계수로 잡음 분산을 추정하는 방법이 기존에 제시되어 있다. 여기서 제안하는 알고리즘은 기존 알고리즘인 PSA(partial sample average)와 비교해 연산량에서 차이가 거의 없이 구현되며, 3GPP TDD[1]에서의 모의 실험을 통하여 기존 알고리즘보다 더 정확한 분산 값을 찾아냄을 확인하였다.
Ⅰ 슬라이스에서 복호화기 예측을 이용한 예측 모드 SKIP 부호화 모드
유해 이미지 분류 성능 개선을 위한 이중 피부 화소 검출을 이용한 인체 검출
SOA 기반의 양방향 동영상을 위한 디지털 아이템 운용 모델 설계