In analyzing data from unreplicated factorial designs, the half-normal probability plot is a commonly used method to screen the few vital effects. Recently, numerous methods have been proposed to overcome the subjective interpretation on this plot. We...
In analyzing data from unreplicated factorial designs, the half-normal probability plot is a commonly used method to screen the few vital effects. Recently, numerous methods have been proposed to overcome the subjective interpretation on this plot. We review three methods: Lenth’s method (1989), the Step-down Lenth’s method proposed by Ye et al. (2001) and the LGB method proposed by Lawson et al. (1998). We compare their performance to identify active effects using a simulation study. It turns out that the performance depends on the number of active effects.
For a small number of active effects, the LGB is more effective in identifying the active effects than the others. On the other hand, the LGB method is not doing well when the number of active effects is large. The LGB method is to fit a simple least-squares line without intercept to the inliers, which are determined by Lenth’s method. The effects exceeding the prediction interval based on the fitted line are judged to be significant. In the case when the number of active effects is large, there might be a problem with classifying the inliers and outliers.
Thus, improving the accuracy of classifying the effects into inliers and outliers, we propose a modified method in which more outliers could be classified by adaptation of two methods : Carling’s (2000) method for adjusted boxplot, and Lenth’s method. If there exists no outlier or a wide range of the inliers determined by Lenth’s method, we could find more outliers by Carling’s method.
Also, we propose an integrated method which utilizes all those three methods mentioned. A conservative approach could declare the intersection of those active effects by each method to be significant. An aggressive approach could declare the union of those active effects by each method to be significant. We can categorize the significant effects as four-color stages: Green, Blue, Orange and Gray. All the use of these approaches depends on whether the experiment-wise error rate to be controlled or not.
We conduct a simulation study based on 10,000 sets of experimental data in unreplicated 2^4 design with the number of active effects being 1, 2, 3, 4, 5 and 6. We have considered both cases (1) all having the same magnitude from 0.5 to 4 in 0.5 increments, and (2) all having a different magnitude.
For a comparative purpose, we use three efficiency measures of power ; (1) Power denoting the expected fraction of active effects that are declared active, (2) Power I denoting the proportion of detecting all active effects allowing misidentifying inactive effects as active, and (3) Power II denoting the proportion of exactly detecting all active effects only. We compare the efficiency of those three methods and our proposed methods by simulation study. We show that the proposed methods seem to perform better than the existing methods in some sense.