RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Impact of Stirring Speed on β-Lactoglobulin Fibril Formation

      한글로보기

      https://www.riss.kr/link?id=A104495139

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      β-Lactoglobulin (β-lg) can produce fibrils that have multi-functional properties. Impacts of different stirring speeds on characteristics of β-lg fibrils as a stable form in β-lg fibril solutions were investigated. Fibril concentration, fibril mor...

      β-Lactoglobulin (β-lg) can produce fibrils that have multi-functional properties. Impacts of different stirring speeds on characteristics of β-lg fibrils as a stable form in β-lg fibril solutions were investigated. Fibril concentration, fibril morphology, turbidity, particle size distribution, zeta potential, and rheological behavior of solutions were studied. Stirring enhanced fibril formation and stability of a fibril solution, in comparison with unstirred solutions. Increasing the stirring speed produced more turbidity and a greater distribution of particle sizes, higher viscosity values, but no differences in zeta potential values of β-lg fibril solutions. However, a high stirring speed is not feasible due to reduction of the fibril yield and changes in fibril morphology.

      더보기

      참고문헌 (Reference)

      1 Dave AC, "β-Lactoglobulin self-assembly: Structural changes in early stages and disulfide bonding in fibrils" 61 : 7817-7828, 2013

      2 Loveday SM, "β-Lactoglobulin nanofibrils: Effect of temperature on fibril formation kinetics, fibril morphology and the rheological properties of fibril dispersions" 27 : 242-249, 2012

      3 Engelhardt K, "pH effects on the intermolecular structure of β-lactoglobulin modified air-water interfaces and its impact on foam rheology" 29 : 11646-11655, 2013

      4 Kroes-Nijboer A, "Thioflavin T fluorescence assay for β-lactoglobulin fibrils hindered by DAPH" 165 : 140-145, 2009

      5 Yan H, "Thermo-reversible protein fibrillar hydrogels as cell scaffolds" 139 : 71-84, 2008

      6 Xiong YL, "Thermal aggregation of β-lactoglobulin: Effect of pH, ionic environment and thiol reagent" 76 : 70-77, 1993

      7 Sorbie KS, "The rheology of pseudoplastic fluids in porous media using network modeling" 130 : 508-534, 1989

      8 Mounsey JS, "The effect of heating on β-lactoglobulin-chitosan mixtures as influenced by pH and ionic strength" 22 : 65-73, 2008

      9 Kroes-Nijboer A, "The critical aggregation concentration of β-lactoglobulin-based fibril formation" 4 : 59-63, 2009

      10 Kehoe JJ, "The characteristics of heat-induced aggregates formed by mixtures of β-lactoglobulin and β-casein" 39 : 264-271, 2014

      1 Dave AC, "β-Lactoglobulin self-assembly: Structural changes in early stages and disulfide bonding in fibrils" 61 : 7817-7828, 2013

      2 Loveday SM, "β-Lactoglobulin nanofibrils: Effect of temperature on fibril formation kinetics, fibril morphology and the rheological properties of fibril dispersions" 27 : 242-249, 2012

      3 Engelhardt K, "pH effects on the intermolecular structure of β-lactoglobulin modified air-water interfaces and its impact on foam rheology" 29 : 11646-11655, 2013

      4 Kroes-Nijboer A, "Thioflavin T fluorescence assay for β-lactoglobulin fibrils hindered by DAPH" 165 : 140-145, 2009

      5 Yan H, "Thermo-reversible protein fibrillar hydrogels as cell scaffolds" 139 : 71-84, 2008

      6 Xiong YL, "Thermal aggregation of β-lactoglobulin: Effect of pH, ionic environment and thiol reagent" 76 : 70-77, 1993

      7 Sorbie KS, "The rheology of pseudoplastic fluids in porous media using network modeling" 130 : 508-534, 1989

      8 Mounsey JS, "The effect of heating on β-lactoglobulin-chitosan mixtures as influenced by pH and ionic strength" 22 : 65-73, 2008

      9 Kroes-Nijboer A, "The critical aggregation concentration of β-lactoglobulin-based fibril formation" 4 : 59-63, 2009

      10 Kehoe JJ, "The characteristics of heat-induced aggregates formed by mixtures of β-lactoglobulin and β-casein" 39 : 264-271, 2014

      11 Krebs MRH, "The binding of thioflavin-T to amyloid fibrils: Localization and implications" 149 : 30-37, 2005

      12 Sabate R, "Temperature dependence of the nucleation constant rate in β amyloid fibrillogenesis" 35 : 9-13, 2005

      13 Aymard P, "Static and dynamic scattering of β-lactoglobulin aggregates formed after heat induced denaturation at pH 2" 32 : 2542-2552, 1999

      14 Rûhs PA, "Simultaneous control of pH and ionic strength during interfacial rheology of β-lactoglobulin fibrils adsorbed at liquid/liquid interfaces" 28 : 12536-12543, 2012

      15 Dunstan DE, "Shearinduced structure and mechanics of β-lactoglobulin amyloid fibrils" 5 : 5020-5028, 2009

      16 Hill EK, "Shear flow induces amyloid fibril formation" 7 : 10-13, 2006

      17 Akkermans C, "Properties of protein fibrils in whey protein isolate solutions: Microstructure, flow behaviour and gelation" 18 : 1034-1042, 2008

      18 Dave AC, "Modulating β-lactoglobulin nanofibril self-assembly at pH 2 using glycerol and sorbitol" 15 : 95-103, 2014

      19 Akkermans C, "Micrometer-sized fibrillar protein aggregates from soy glycinin and soy protein isolate" 55 : 9877-9882, 2007

      20 Quintana JM, "Linear and nonlinear viscoelastic behavior of oil-in-water emulsions stabilized with polysaccharides" 33 : 215-236, 2002

      21 Rogers SS, "Investigating the permanent electric dipole moment of β-lactoglobulin fibrils, using transient electric birefringence" 82 : 241-252, 2006

      22 Kavanagh GM, "Heat-induced gelation of globular proteins: Part 3. Molecular studies on low pH β-lactoglobulin gels" 28 : 41-50, 2000

      23 Weiss J, "Functional materials in food nanotechnology" 71 : 107-116, 2006

      24 Pearce FG, "Formation of amyloid-like fibrils by ovalbumin and related proteins under conditions relevant to food processing" 55 : 318-322, 2007

      25 Majhi PR, "Electrostatically driven protein aggregation: β-Lactoglobulin at low ionic strength" 22 : 9150-9159, 2006

      26 Bolder SG, "Effect of stirring and seeding on whey protein fibril formation" 55 : 5661-5669, 2007

      27 Qi X L, "E f fect of temperature on the secondary structure of β-lactoglobulin at pH 6.7, as determined by CD and IR spectroscopy: A test of the molten globule hypothesis" 324 : 341-346, 1997

      28 Oboroceanu D, "Characterization of β-lactoglobulin fibrillar assembly using atomic force microscopy, polyacrylamide gel electrophoresis, and in situ f ourier t ransf orm infrared spectroscopy" 58 : 3667-3673, 2010

      29 Serfert Y, "Characterisation and use of β-lactoglobulin fibrils for microencapsulation of lipophilic ingredients and oxidative stability thereof" 143 : 53-61, 2014

      30 Ron N, "Beta-lactoglobulin-polysaccharide complexes as nanovehicles for hydrophobic nutraceuticals in non-fat foods and clear beverages" 20 : 686-693, 2010

      31 Pilkington SM, "Amyloid fibrils as a nanoscaffold for enzyme immobilization" 26 : 93-100, 2010

      32 Rochet JC, "Amyloid fibrillogenesis: Theme and variations" 10 : 60-68, 2000

      33 Sardar S, "Amyloid fibril formation by β-lactoglobulin is inhibited by gold nanoparticles" 69 : 137-145, 2014

      34 Bromley EH, "Aggregation across the length scales in β-lactoglobulin" 128 : 13-27, 2005

      35 Zsila F, "A new ligand for an old lipocalin: Induced circular dichroism spectra reveal binding of bilirubin to bovine β-lactoglobulin" 539 : 85-90, 2003

      36 Konrad G, "A large-scale isolation of native β-lactoglobulin:Characterization of physicochemical properties and comparison with other methods" 10 : 713-721, 2000

      37 Hamada D, "A k inetic s tudy o f β-lactoglobulin amyloid fibril formation promoted by urea" 11 : 2417-2426, 2002

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-11-23 학회명변경 영문명 : Korean Society Of Food Science And Biotechnology -> Korean Society of Food Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.75 0.17 0.56
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.49 0.43 0.364 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼