The commutative products of the distributions $x^r\;ln^p\;{\mid}x{\mid}\;and\;x^{-r-1}ln^q\;{\mid}x{\mid}$ and of sgn x $x^r\;ln^p\;{\mid}x{\mid}\;and\;sgn\;x\;x^{-r-1}ln^q\;{\mid}x{\mid}$ are evaluated for $r=0,\;\pm1,\;\pm2,...\;and\;p,\;q=0,1,2,....$
The commutative products of the distributions $x^r\;ln^p\;{\mid}x{\mid}\;and\;x^{-r-1}ln^q\;{\mid}x{\mid}$ and of sgn x $x^r\;ln^p\;{\mid}x{\mid}\;and\;sgn\;x\;x^{-r-1}ln^q\;{\mid}x{\mid}$ are evaluated for $r=0,\;\pm1,\;\pm2,...\;and\;p,\;q=0,1,2,....$