RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      An R2 Based Bootstrap Test for Nonnested Hypotheses in Regression Models

      한글로보기

      https://www.riss.kr/link?id=G3608640

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      This paper utilizes the bootstrap to construct a test using R2 for nonnested regression models. The bootstrap enables us to compute the statistical significance of the diggerences in R2's and to formally test about nonnested regression models. Bootstrapped R2 test that this paper proposes is expected to show better finite sample properties since it does not have such cumulated errors in the computation process. Moreover, bootstrapped R2 test will remoce the possibility of inconsistent test results that the previous test suffer from. Because bootstrapped R2 test only evaluates if a model has a significantly higer explanatory power Monte Carlo simulation results to compare the finite sample properties of the proposed test with the previous tests such as Cox test and J-test.
      번역하기

      This paper utilizes the bootstrap to construct a test using R2 for nonnested regression models. The bootstrap enables us to compute the statistical significance of the diggerences in R2's and to formally test about nonnested regression models. Bootstr...

      This paper utilizes the bootstrap to construct a test using R2 for nonnested regression models. The bootstrap enables us to compute the statistical significance of the diggerences in R2's and to formally test about nonnested regression models. Bootstrapped R2 test that this paper proposes is expected to show better finite sample properties since it does not have such cumulated errors in the computation process. Moreover, bootstrapped R2 test will remoce the possibility of inconsistent test results that the previous test suffer from. Because bootstrapped R2 test only evaluates if a model has a significantly higer explanatory power Monte Carlo simulation results to compare the finite sample properties of the proposed test with the previous tests such as Cox test and J-test.

      더보기

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      1. Introduction 2. Model 3. Bootstrap Methods 4. Bootstrapping the difference in R2 5. Finite sample Performance of Alternative Tests for Nonnested Regression Models 6. Conclusion

      1. Introduction
      2. Model
      3. Bootstrap Methods
      4. Bootstrapping the difference in R2
      5. Finite sample Performance of Alternative Tests for Nonnested Regression Models
      6. Conclusion

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼