RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Suggesting Moving Positions in Go-Game with Convolutional Neural Networks Trained Data

      한글로보기

      https://www.riss.kr/link?id=A101866219

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Nowadays, machine learning and deep learning has been becoming popular and useful in applying to resolve people’s problem. Specially, in HCI (Human Computer Interaction) field like robots or automatic game programs. Go-Game (the game of Go) is still a challenge in coding to get the wisest moves each turn to achieve the winner at the end of a game. In our work, we suggest the next move based on Convolutional Neural Networks (CNNs) and make evaluations and comparisons to gamers separate in 3 ranks (levels). We train 5-layers CNNs by supervised learning from a database of human games using the board-states. The network suggests the move of the selected player and the others player can be helped or not- depend on playing option. The program can also play the game automatically without human interactions during all the game progress (Machine-Machine game). In the other way, our program can interact with a human-player and accept move commands from player (Human-Machine or Human-Human). This technique allows Go-game program play the game without searching as traditional program but trained by convolutional neural networks. In our tests, we separate in 3 levels and use totally 598,472 board-states for training data. Our main aim is to help people who are the newbie in playing Go-game. With this technique, we expected that we can apply to develop AI programs and devices with more and more effects and higher performance.
      번역하기

      Nowadays, machine learning and deep learning has been becoming popular and useful in applying to resolve people’s problem. Specially, in HCI (Human Computer Interaction) field like robots or automatic game programs. Go-Game (the game of Go) is still...

      Nowadays, machine learning and deep learning has been becoming popular and useful in applying to resolve people’s problem. Specially, in HCI (Human Computer Interaction) field like robots or automatic game programs. Go-Game (the game of Go) is still a challenge in coding to get the wisest moves each turn to achieve the winner at the end of a game. In our work, we suggest the next move based on Convolutional Neural Networks (CNNs) and make evaluations and comparisons to gamers separate in 3 ranks (levels). We train 5-layers CNNs by supervised learning from a database of human games using the board-states. The network suggests the move of the selected player and the others player can be helped or not- depend on playing option. The program can also play the game automatically without human interactions during all the game progress (Machine-Machine game). In the other way, our program can interact with a human-player and accept move commands from player (Human-Machine or Human-Human). This technique allows Go-game program play the game without searching as traditional program but trained by convolutional neural networks. In our tests, we separate in 3 levels and use totally 598,472 board-states for training data. Our main aim is to help people who are the newbie in playing Go-game. With this technique, we expected that we can apply to develop AI programs and devices with more and more effects and higher performance.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. Introduction
      • 2. Training Procedure and Architecture of CNN
      • 3. Data
      • 4. Results
      • Abstract
      • 1. Introduction
      • 2. Training Procedure and Architecture of CNN
      • 3. Data
      • 4. Results
      • 5. Calculating Score Table
      • 6. Discussion
      • References
      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼