1 임진수, "유방암 분류 성능 향상을 위한 배깅 서포트 벡터 머신" 한국보건정보통계학회 39 (39): 15-24, 2014
2 H. Abdi, "“The eigen-decomposition: Eigenvalues and eigenvectors,” Encyclopedia of measurement and statistics"
3 "UCI Machine Learning Repository" University of California, Center for Machine Learning and Intelligent Systems
4 S. Hochreiter, "The vanishing gradient problem during learning recurrent neural nets and problem solutions" 6 (6): 107-116, 1998
5 N. V. Chawla, "Smote : Synthetic minority oversampling technique" 16 : 321-357, 2002
6 G. E. Hinton, "Reducing the Dimensionality of Data with Neural Networks" 313 (313): 504-507, 2006
7 Finney, D. John, "Probit analysis: a statistical treatment of the sigmoid response curve" Cambridge university press 1952
8 S. Wold, "Principal component analysis" 2 (2): 37-52, 1987
9 C. Rich, "Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping" 2001
10 S. Hu, "MSMOTE:improving classification performance when training data is imbalanced" 2 : 13-17, 2009
1 임진수, "유방암 분류 성능 향상을 위한 배깅 서포트 벡터 머신" 한국보건정보통계학회 39 (39): 15-24, 2014
2 H. Abdi, "“The eigen-decomposition: Eigenvalues and eigenvectors,” Encyclopedia of measurement and statistics"
3 "UCI Machine Learning Repository" University of California, Center for Machine Learning and Intelligent Systems
4 S. Hochreiter, "The vanishing gradient problem during learning recurrent neural nets and problem solutions" 6 (6): 107-116, 1998
5 N. V. Chawla, "Smote : Synthetic minority oversampling technique" 16 : 321-357, 2002
6 G. E. Hinton, "Reducing the Dimensionality of Data with Neural Networks" 313 (313): 504-507, 2006
7 Finney, D. John, "Probit analysis: a statistical treatment of the sigmoid response curve" Cambridge university press 1952
8 S. Wold, "Principal component analysis" 2 (2): 37-52, 1987
9 C. Rich, "Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping" 2001
10 S. Hu, "MSMOTE:improving classification performance when training data is imbalanced" 2 : 13-17, 2009
11 H. Cao, "Integrated oversampling for imbalanced time series classification" 25 (25): 2809-2282, 2013
12 Y. Bengio, "Greedy Layer-Wise Training of Deep Networks" 19 (19): 153-160, 2007
13 P. Vincent, "Extracting and composing robust features with denoising autoencoders" 1096-1103, 2008
14 N. Srivastava, "Dropout : A Simple Way to Prevent Neural Networks from Overfitting" 15 (15): 1929-1958, 2014
15 Y. LeCun, "Deep Learning" MIT Press 2016
16 N. S. Altman, "An introduction to kernel and nearestneighbor nonparametric regression" 46 (46): 175-185, 1992
17 C. Shorten, "A survey on Image Data Augmentation for Deep Learning" 6 (6): 60-, 2019
18 G. E. Hinton, "A fast learning algorithm for deep belief nets" 18 (18): 1527-1554, 2006