RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      시간 종속적인 리아프노프 함수를 이용한 모바일 로봇의 선도-추종 샘플 데이터 제어 = Leader-Following Sampled-Data Control of Wheeled Mobile Robots using Clock Dependent Lyapunov Function

      한글로보기

      https://www.riss.kr/link?id=A107846581

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The aim of this paper is to propose a less conservative stabilization condition for leader-following sampled-data control of wheeled mobile robot (WMR) systems by using a clock-dependent Lyapunov function (CDLF) with looped functionals. In the leader-following WMR system, the state and input of the leader robot are measured by digital devices mounted on the following robot, and they are utilized to construct the sampled-data controller of the following robot. To design the sampled-data controller, a stabilization condition is derived by using the CDLF with looped functionals, and formulated in terms of sum of squares (SOS). The considered Lyapunov function is a polynomial form with respect to the clock related to the transmitted sampling instants. As the degree of the Lyapunov function increases, the stabilization condition becomes less conservative. This ensures that the designed controller is able to stabilize the system with a larger maximum sampling interval. The simulation results are provided to demonstrate the effectiveness of the proposed method.
      번역하기

      The aim of this paper is to propose a less conservative stabilization condition for leader-following sampled-data control of wheeled mobile robot (WMR) systems by using a clock-dependent Lyapunov function (CDLF) with looped functionals. In the leader-...

      The aim of this paper is to propose a less conservative stabilization condition for leader-following sampled-data control of wheeled mobile robot (WMR) systems by using a clock-dependent Lyapunov function (CDLF) with looped functionals. In the leader-following WMR system, the state and input of the leader robot are measured by digital devices mounted on the following robot, and they are utilized to construct the sampled-data controller of the following robot. To design the sampled-data controller, a stabilization condition is derived by using the CDLF with looped functionals, and formulated in terms of sum of squares (SOS). The considered Lyapunov function is a polynomial form with respect to the clock related to the transmitted sampling instants. As the degree of the Lyapunov function increases, the stabilization condition becomes less conservative. This ensures that the designed controller is able to stabilize the system with a larger maximum sampling interval. The simulation results are provided to demonstrate the effectiveness of the proposed method.

      더보기

      참고문헌 (Reference)

      1 A. Seuret, "Stability Analysis of Sampled-data Systems Using sum of Squares" 58 (58): 1620-1625, 2012

      2 한승용, "Sampled-Data MPC for Leader-Following of Multi-Mobile Robot System" 대한전기학회 67 (67): 308-313, 2018

      3 S. Han, "Sampled Parameter Dependent Stabilization for Linear Parameter Varying Systems with Asynchronous Parameter Sampling" 31 (31): 3279-3309, 2021

      4 S. Prajna, "SOSTOOLS: Sum of Squares Optimization Toolbox for Matlab" Control Dyn. Syst., California Inst. Technol 2004

      5 F. Wu, "SOS-based Solution Approach to Polynomial LPV System Analysis and Synthesis Problems" 78 (78): 600-611, 2005

      6 K. Hernandez, "Multi-goal path Planning Autonomous System for Picking up and Delivery Tasks in Mobile Robotics" 15 (15): 232-238, 2017

      7 T. Blender, "Managing a Mobile Agricultural Robot Swarm for a Seeding Task" IEEE 2016

      8 M. Schneier, "Literature Review of Mobile Robots for Manufacturing" US Department of Commerce, National Institute of Standards and Technology 2015

      9 J. Shao, "Leader-following Formation Control of Multiple Mobile Vehicles" 1 (1): 545-552, 2007

      10 M. A. Lewis, "High Precision Formation Control of Mobile Robots Using Virtual Structures" 4 (4): 387-403, 1997

      1 A. Seuret, "Stability Analysis of Sampled-data Systems Using sum of Squares" 58 (58): 1620-1625, 2012

      2 한승용, "Sampled-Data MPC for Leader-Following of Multi-Mobile Robot System" 대한전기학회 67 (67): 308-313, 2018

      3 S. Han, "Sampled Parameter Dependent Stabilization for Linear Parameter Varying Systems with Asynchronous Parameter Sampling" 31 (31): 3279-3309, 2021

      4 S. Prajna, "SOSTOOLS: Sum of Squares Optimization Toolbox for Matlab" Control Dyn. Syst., California Inst. Technol 2004

      5 F. Wu, "SOS-based Solution Approach to Polynomial LPV System Analysis and Synthesis Problems" 78 (78): 600-611, 2005

      6 K. Hernandez, "Multi-goal path Planning Autonomous System for Picking up and Delivery Tasks in Mobile Robotics" 15 (15): 232-238, 2017

      7 T. Blender, "Managing a Mobile Agricultural Robot Swarm for a Seeding Task" IEEE 2016

      8 M. Schneier, "Literature Review of Mobile Robots for Manufacturing" US Department of Commerce, National Institute of Standards and Technology 2015

      9 J. Shao, "Leader-following Formation Control of Multiple Mobile Vehicles" 1 (1): 545-552, 2007

      10 M. A. Lewis, "High Precision Formation Control of Mobile Robots Using Virtual Structures" 4 (4): 387-403, 1997

      11 A. Guillet, "Formation Control of Agricultural Mobile Robots : A Bidirectional Weighted Constraints Approach" 34 (34): 1260-1274, 2017

      12 F. Zhang, "Formation Control Based on the Method of Artificial Potential and the Leader-follower for Multiple Mobile Robots" 4 : 2010

      13 Y. Mei, "Energy-efficient Mobile Robot Exploration" 505-511, 2006

      14 T. Balch, "Behavior-based Formation Control for Multirobot Teams" 14 (14): 926-939, 1998

      15 Y. Kanayama, "A Stable Tracking Control Method for an Autonomous Mobile Robot" 384-389, 1990

      16 E. Fridman, "A Refined Input Delay Approach to Sampled-data Control" 46 (46): 421-427, 2010

      17 A. Casavola, "A Networked-based MPC Architecture for Constrained LPV Systems" 48 (48): 158-163, 2015

      18 C. Briat, "A Looped-functional Approach for Robust Stability Analysis of Linear Impulsive Systems" 61 (61): 980-988, 2012

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2028 평가예정 재인증평가 신청대상 (재인증)
      2022-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2019-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2016-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2014-07-03 학술지명변경 외국어명 : Journal of IEMEK -> IEMEK Journal of Embedded Systems and Applications KCI등재
      2012-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2011-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2009-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.27 0.27 0.22
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.22 0.18 0.415 0.07
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼