RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Victim BTB 를 활용한 히트율 개선과 효율적인 통합 분기 예측 = Hit Ratio and Hybrid Branc h Prediction Performance with Victim BTB

      한글로보기

      https://www.riss.kr/link?id=A101868319

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In order to improve the branch prediction accuracy and to reduce the BTB miss rate, this paper proposes a two-level BTB structure that adds small-sized victim BTB to the conventional BTB. With small cost, two-level BTB can reduce the BTB miss rate as well as improve the prediction accuracy of the hybrid branch prediction strategy which combines dynamic prediction and static prediction. Through the trace-driven simulation of four benchmark programs, the performance improvement by the proposed two-level BTB structure is analysed and validated. Our proposed BTB structure can improve the BTB miss rate by 25.5% and the misprediction rate by 26.75%.
      번역하기

      In order to improve the branch prediction accuracy and to reduce the BTB miss rate, this paper proposes a two-level BTB structure that adds small-sized victim BTB to the conventional BTB. With small cost, two-level BTB can reduce the BTB miss rate as ...

      In order to improve the branch prediction accuracy and to reduce the BTB miss rate, this paper proposes a two-level BTB structure that adds small-sized victim BTB to the conventional BTB. With small cost, two-level BTB can reduce the BTB miss rate as well as improve the prediction accuracy of the hybrid branch prediction strategy which combines dynamic prediction and static prediction. Through the trace-driven simulation of four benchmark programs, the performance improvement by the proposed two-level BTB structure is analysed and validated. Our proposed BTB structure can improve the BTB miss rate by 25.5% and the misprediction rate by 26.75%.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼