RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Physics-Informed Neural Networks 연구 동향 및 농업 분야 발전 방향 = Status and Development of Physics-Informed Neural Networks in Agriculture

      한글로보기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Mathematical modeling is the process of representing physical phenomena using equations, and it often describes various scientific phenomena through differential equations. Numerical analysis, which is capable of approximating solutions to partial differential equations representing physical phenomena, is widely utilized. However, in high-dimensional or nonlinear systems, computational costs can substantially increase, leading to potential numerical instability or convergence issues. Recently, Physics-Informed Neural Networks (PINNs) have emerged as an alternative approach. A PINN leverages physical laws even with limited data to provide highly reliable predictive performance and can address the convergence issues and high computational costs associated with numerical analysis. This paper analyzes the weak signals, research trends, patent trends, and case studies of PINNs. On the basis of this analysis, it proposes directions for the development of PINN techniques in the agricultural field. In particular, the application of PINNs in agriculture is expected to be more effective than in other industries because of their ability to reflect real-time changes in biological processes. While the technology readiness level of PINNs remains low, the potential for model training with minimal data and real-time prediction capabilities suggests that PINNs could replace traditional numerical analysis models. It is anticipated that the research and industrial applications of PINN will develop at an increasing pace while focusing on addressing the complexity of mathematical models in agriculture, mathematical modeling and the application of various biological processes; securing key patents related to PINNs; and standardizing PINN technology in the field of agriculture.
      번역하기

      Mathematical modeling is the process of representing physical phenomena using equations, and it often describes various scientific phenomena through differential equations. Numerical analysis, which is capable of approximating solutions to partial dif...

      Mathematical modeling is the process of representing physical phenomena using equations, and it often describes various scientific phenomena through differential equations. Numerical analysis, which is capable of approximating solutions to partial differential equations representing physical phenomena, is widely utilized. However, in high-dimensional or nonlinear systems, computational costs can substantially increase, leading to potential numerical instability or convergence issues. Recently, Physics-Informed Neural Networks (PINNs) have emerged as an alternative approach. A PINN leverages physical laws even with limited data to provide highly reliable predictive performance and can address the convergence issues and high computational costs associated with numerical analysis. This paper analyzes the weak signals, research trends, patent trends, and case studies of PINNs. On the basis of this analysis, it proposes directions for the development of PINN techniques in the agricultural field. In particular, the application of PINNs in agriculture is expected to be more effective than in other industries because of their ability to reflect real-time changes in biological processes. While the technology readiness level of PINNs remains low, the potential for model training with minimal data and real-time prediction capabilities suggests that PINNs could replace traditional numerical analysis models. It is anticipated that the research and industrial applications of PINN will develop at an increasing pace while focusing on addressing the complexity of mathematical models in agriculture, mathematical modeling and the application of various biological processes; securing key patents related to PINNs; and standardizing PINN technology in the field of agriculture.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼