RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      화자적응과 군집화를 이용한 화자식별 시스템의 성능 및 속도 향상 = Adaptation and Clustering Method for Speaker Identification with Small Training Data

      한글로보기

      https://www.riss.kr/link?id=A100900336

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      One key factor that hinders the widespread deployment of speaker identification technologies is the requirement of long enrollment utterances to guarantee low error rate during identification. To gain user acceptance of speaker identification technologies, adaptation algorithms that can enroll speakers with short utterances are highly essential. To this end, this paper applies MLLR speaker adaptation for speaker enrollment and compares its performance against other speaker modeling techniques: GMMs and HMM. Also, to speed up the computational procedure of identification, we apply speaker clustering method which uses principal component analysis (PCA) and weighted Euclidean distance as distance measurement. Experimental results show that MLLR adapted modeling method is most effective for short enrollment utterances and that the GMMs performs better when long utterances are available.
      번역하기

      One key factor that hinders the widespread deployment of speaker identification technologies is the requirement of long enrollment utterances to guarantee low error rate during identification. To gain user acceptance of speaker identification technolo...

      One key factor that hinders the widespread deployment of speaker identification technologies is the requirement of long enrollment utterances to guarantee low error rate during identification. To gain user acceptance of speaker identification technologies, adaptation algorithms that can enroll speakers with short utterances are highly essential. To this end, this paper applies MLLR speaker adaptation for speaker enrollment and compares its performance against other speaker modeling techniques: GMMs and HMM. Also, to speed up the computational procedure of identification, we apply speaker clustering method which uses principal component analysis (PCA) and weighted Euclidean distance as distance measurement. Experimental results show that MLLR adapted modeling method is most effective for short enrollment utterances and that the GMMs performs better when long utterances are available.

      더보기

      참고문헌 (Reference)

      1 S. Young, "The HTK Book (for HTK version 3.1)" Cambridge University Engineering Department 2001

      2 C. Huang, "Speaker selection training for large vocabulary continuous speech recognition" 1 : 609-612, 2002

      3 P. C. Woodland, "Speaker adaptation: techniques and challenges" 1 : 85-90, 1999

      4 D. A. Reynolds, "Robust text-independent speaker identification using Gaussian mixture speaker models" 3 (3): 72-83, 1995

      5 R. Kuhn, "Rapid speaker adaptation in eigenvoice space" 6 : 695-707, 2000

      6 C. J. Leggetter, "Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models" 9 : 171-185, 1995

      7 J. L. Gauvain, "Maximum a-posteriori estimation for multivariate Gaussian mixture observations of Markov chains" 2 (2): 291-298, 1994

      1 S. Young, "The HTK Book (for HTK version 3.1)" Cambridge University Engineering Department 2001

      2 C. Huang, "Speaker selection training for large vocabulary continuous speech recognition" 1 : 609-612, 2002

      3 P. C. Woodland, "Speaker adaptation: techniques and challenges" 1 : 85-90, 1999

      4 D. A. Reynolds, "Robust text-independent speaker identification using Gaussian mixture speaker models" 3 (3): 72-83, 1995

      5 R. Kuhn, "Rapid speaker adaptation in eigenvoice space" 6 : 695-707, 2000

      6 C. J. Leggetter, "Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models" 9 : 171-185, 1995

      7 J. L. Gauvain, "Maximum a-posteriori estimation for multivariate Gaussian mixture observations of Markov chains" 2 (2): 291-298, 1994

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2009-01-01 평가 학술지 폐간(기타)
      2007-01-24 학술지명변경 한글명 : 말소리</br>외국어명 : MALSORI KCI등재
      2006-01-01 평가 등재학술지 선정(등재후보2차) KCI등재
      2005-10-10 학술지명변경 한글명 : 말소리</br>외국어명 : MALSORI KCI등재후보
      2005-05-30 학술지명변경 한글명 : 말소리</br>외국어명 : MALSORI KCI등재후보
      2005-01-01 평가 등재후보 1차 PASS(등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 선정(신규평가) KCI등재후보
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼