본 논문에서는 잡음음성인식을 위한 데이터 기반의 향상된 Jacobian 적응 방식을 제안하였다. Jacobian 적응에서 필요로 하는 기준 HMM을 구성하기 위해서 기존에 주로 사용되던 모델결합 방식을 ...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A101069572
2006
Korean
KCI등재,SCOPUS,ESCI
학술저널
159-163(5쪽)
1
0
상세조회0
다운로드국문 초록 (Abstract)
본 논문에서는 잡음음성인식을 위한 데이터 기반의 향상된 Jacobian 적응 방식을 제안하였다. Jacobian 적응에서 필요로 하는 기준 HMM을 구성하기 위해서 기존에 주로 사용되던 모델결합 방식을 ...
본 논문에서는 잡음음성인식을 위한 데이터 기반의 향상된 Jacobian 적응 방식을 제안하였다. Jacobian 적응에서 필요로 하는 기준 HMM을 구성하기 위해서 기존에 주로 사용되던 모델결합 방식을 사용하는 대신에 잡음음성을 이용하여 직접 훈련하는 방식을 제안하였다. 이렇게 함으로서 기존의 방법에 비해서 잡음에 의한 음향모델의 변이를 보다 잘 처리할 수 있을 것으로 생각된다 제안된 방법에서는 Jacobian 행렬의 추정을 위해서 훈련과정에서 Baum-Welch 알고리듬을 사용하였다. 잡음음성에 대한 인식실험을 통해서 제안된 방식이 기존의 Jacobian 적응 방식 뿐 만 아니라 다른 형태의 모델적응 방식들에 비해서도 우수한 성능을 보임을 알 수 있었다.
다국어 초록 (Multilingual Abstract)
In this paper a data-driven method to improve the performance of the Jacobian adaptation (JA) for the noisy speech recognition is proposed. In stead of constructing the reference HMM by using the model composition method like the parallel model combin...
In this paper a data-driven method to improve the performance of the Jacobian adaptation (JA) for the noisy speech recognition is proposed. In stead of constructing the reference HMM by using the model composition method like the parallel model combination (PMC), we propose to train the reference HMM directly with the noisy speech. This was motivated from the idea that the directly trained reference HMM will model the acoustical variations due to the noise better than the composite HMM. For the estimation of the Jacobian matrices, the Baum-Welch algorithm is employed during the training. The recognition experiments have been done to show the improved performance of the proposed method over the Jacobian adaptation as well as other model compensation methods.
다중 레벨 양자화 기법을 적용한 오디오 핑거프린트 추출 방법
재료물성 측정을 위한 직선집속 PVDF 초음파 트랜스듀서의 새로운 설계 및 응용
코히어런스 영향과 시간에 따른 실측 데이터의 합성 효과 실험
학술지 이력
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2026 | 평가예정 | 재인증평가 신청대상 (재인증) | |
2020-01-01 | 평가 | 등재학술지 유지 (재인증) | ![]() |
2017-01-01 | 평가 | 등재학술지 유지 (계속평가) | ![]() |
2013-01-01 | 평가 | 등재학술지 유지 (등재유지) | ![]() |
2010-01-01 | 평가 | 등재학술지 유지 (등재유지) | ![]() |
2008-01-01 | 평가 | 등재학술지 유지 (등재유지) | ![]() |
2006-01-01 | 평가 | 등재학술지 유지 (등재유지) | ![]() |
2004-01-01 | 평가 | 등재학술지 유지 (등재유지) | ![]() |
2001-07-01 | 평가 | 등재학술지 선정 (등재후보2차) | ![]() |
1999-01-01 | 평가 | 등재후보학술지 선정 (신규평가) | ![]() |
학술지 인용정보
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.23 | 0.23 | 0.22 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.2 | 0.18 | 0.398 | 0.07 |