RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      Numerical Simulation and Experimental Research of the Flow Coefficient of the Nozzle-Flapper Valve Considering Cavitation

      한글로보기

      https://www.riss.kr/link?id=A105244796

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The nozzle-flapper valves are widely applied as a pilot stage in aerospace and military system. A subject of the analysis presented in this work is to find out a reasonable range of null clearance between the nozzle and flapper. This paper has present...

      The nozzle-flapper valves are widely applied as a pilot stage in aerospace and military system. A subject of the analysis presented in this work is to find out a reasonable range of null clearance between the nozzle and flapper. This paper has presented a numerical flow coefficient simulation. In every design point, a parameterized model is created for flow coefficient simulation and cavitation under different conditions with varying gap width and inlet pressure. Moreover, a new test device has been designed to measure the flow coefficient and for visualized cavitation. The numerical simulation and test results both indicate that cavitation intensity gets fierce initially and shrinks finally as the gap width varies from small to large. From the curve, the flow coefficient mostly has experienced three stages: linear throttle section, transition section and saturation section. The appropriate deflection of flapper is recommended to make the gap width drop into the linear throttle section. The flapper–nozzle null clearance is optionally recommended near the range of DN/16. Finally through simulation it is also concluded that the inlet pressure plays a little role in the influence on the flow coefficient.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. Introduction
      • 2. Theoretical background
      • 3. Numerical simulation
      • 4. Experimental design and setup
      • Abstract
      • 1. Introduction
      • 2. Theoretical background
      • 3. Numerical simulation
      • 4. Experimental design and setup
      • 5. Results and analysis of the simulation and tests
      • 6. Conclusion
      • References
      더보기

      참고문헌 (Reference)

      1 YANG G., "The Research of the Flow Field Cavitation inside Water Hydraulic Poppet Valve by CFD" 1 : 049-, 2007

      2 Zhang L, "The CFD analysis of twin flapper-nozzle valve in pure water hydraulic" 31 (31): 220-227, 2012

      3 Urata E., "On the torque generated in a servo valve torque motor using permanent magnets" 221 (221): 519-525, 2007

      4 Chern M J, "Numerical Study on Cavitation Occurrence in Globe Valve" 139 (139): 25-34, 2013

      5 Guoyi Peng, "Numerical Simulation of Unsteady Cavitation in a High-speed Water Jet" 한국유체기계학회 9 (9): 66-74, 2016

      6 Sijun Wei, "Nozzle structure and flow coefficient of nozzle flapper" 8 (8): 21-25, 1989

      7 Sijun Wei, "Nozzle structure and flow coefficient of nozzle flapper" 8 (8): 21-25, 1989

      8 Wang T., "Modelling of a nozzle-flapper type pneumatic servo valve including the influence of flow force" 6 (6): 33-43, 2005

      9 Khodaii z., "Modeling the effects of the external acceleration on the two stage flapper-nozzle servo electrohydraulic valves" 15 (15): 1-8, 2016

      10 Merritt H E., "Hydraulic control systems" John Wiley & Sons 1967

      1 YANG G., "The Research of the Flow Field Cavitation inside Water Hydraulic Poppet Valve by CFD" 1 : 049-, 2007

      2 Zhang L, "The CFD analysis of twin flapper-nozzle valve in pure water hydraulic" 31 (31): 220-227, 2012

      3 Urata E., "On the torque generated in a servo valve torque motor using permanent magnets" 221 (221): 519-525, 2007

      4 Chern M J, "Numerical Study on Cavitation Occurrence in Globe Valve" 139 (139): 25-34, 2013

      5 Guoyi Peng, "Numerical Simulation of Unsteady Cavitation in a High-speed Water Jet" 한국유체기계학회 9 (9): 66-74, 2016

      6 Sijun Wei, "Nozzle structure and flow coefficient of nozzle flapper" 8 (8): 21-25, 1989

      7 Sijun Wei, "Nozzle structure and flow coefficient of nozzle flapper" 8 (8): 21-25, 1989

      8 Wang T., "Modelling of a nozzle-flapper type pneumatic servo valve including the influence of flow force" 6 (6): 33-43, 2005

      9 Khodaii z., "Modeling the effects of the external acceleration on the two stage flapper-nozzle servo electrohydraulic valves" 15 (15): 1-8, 2016

      10 Merritt H E., "Hydraulic control systems" John Wiley & Sons 1967

      11 Kagawa T., "Heat transfer effects on the frequency response of a pneumatic nozzle flapper" 107 (107): 332-336, 1985

      12 Johnston D N., "Experimental investigation of flow and force characteristics of hydraulic poppet and disc valves" 161-171, 1991

      13 Babic M., "Determination of Values for Flow Coefficients of First Stage Orifices in Two-Stage Electrohydraulic Servovalves" 5 (5): 27-30, 2002

      14 Zhu Y, "Design criterion involving comprehensive performance characteristics of nozzle-flapper valves" 230 (230): 452-466, 2016

      15 Desantes J M., "Characterization and prediction of the discharge coefficient of non-cavitating diesel injection nozzles" 184 : 371-381, 2016

      16 Aung N Z., "CFD analysis of flow forces and energy loss characteristics in a flapper–nozzle pilot valve with different null clearances" 83 (83): 284-295, 2014

      17 Chen Q., "CFD Simulation of a Hydraulic Servo Valve With Turbulent Flow and Cavitation" 27-30, 2004

      18 Aung N Z, Li S., "A numerical study of cavitation phenomenon in a flapper-nozzle pilot stage of an electrohydraulic servo-valve with an innovative flapper shape" 77 (77): 31-39, 2014

      19 Mchenya J M, "A Study of Flow-field Distribution between the Flapper and Nozzle in a Hydraulic Servo-valve" 658-662, 2011

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2017-09-08 학술지명변경 한글명 : Internation Journal of Fluid Machinery and Systems -> International Journal of Fluid Machinery and Systems
      외국어명 : Internation Journal of Fluid Machinery and Systems -> International Journal of Fluid Machinery and Systems
      KCI등재
      2014-01-08 학회명변경 영문명 : Korean Fluid Machinery Association -> Korean Society for Fluid Machinery KCI등재
      2014-01-08 학술지명변경 외국어명 : 미등록 -> Internation Journal of Fluid Machinery and Systems KCI등재
      2013-10-01 평가 등재학술지 선정 (기타) KCI등재
      2013-01-09 학회명변경 한글명 : 유체기계공업학회 -> 한국유체기계학회 KCI등재후보
      2012-01-01 평가 SCOPUS 등재 (기타) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0 0 0
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0 0 0 0
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼