RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS KCI등재

      수소-산소 대향류 확산 화염에서 산화제와 연료측에 첨가된 Co<sub>2</sub>의 화학적 효과에 관한 수치해석 연구 = A Numerical Study on Chemical Effects of Co<sub>2</sub> Addition to Oxidizer and Fuel Streams in H<sub>2</sub>-O<sub>2</sub> Counterflow Diffusion Flames

      한글로보기

      https://www.riss.kr/link?id=A103654113

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      Numerical simulation of $CO_2$ addition effects to fuel and oxidizer streams on flame structure has been conducted with detailed chemistry in H$_2$-O$_2$ diffusion flames of a counterflow configuration. An artificial species, which displaces added $CO_2$ in the fuel- and oxidizer-sides and has the same thermochemical, transport, and radiation properties to that of added $CO_2$, is introduced to extract pure chemical effects in flame structure. Chemical effects due to thermal dissociation of added $CO_2$ causes the reduction flame temperature in addition to some thermal effects. The reason why flame temperature due to chemical effects is larger in cases of $CO_2$ addition to oxidizer stream is well explained though a defined characteristic strain rate. The produced CO is responsible for the reaction, $CO_2$+H=CO+OH and takes its origin from chemical effects due to thermal dissociation. It is also found that the behavior of produced CO mole fraction is closely related to added $CO_2$ mole fraction, maximum H mole fraction and its position, and maximum flame temperature and its position.
      번역하기

      Numerical simulation of $CO_2$ addition effects to fuel and oxidizer streams on flame structure has been conducted with detailed chemistry in H$_2$-O$_2$ diffusion flames of a counterflow configuration. An artificial species, which displaces added $CO...

      Numerical simulation of $CO_2$ addition effects to fuel and oxidizer streams on flame structure has been conducted with detailed chemistry in H$_2$-O$_2$ diffusion flames of a counterflow configuration. An artificial species, which displaces added $CO_2$ in the fuel- and oxidizer-sides and has the same thermochemical, transport, and radiation properties to that of added $CO_2$, is introduced to extract pure chemical effects in flame structure. Chemical effects due to thermal dissociation of added $CO_2$ causes the reduction flame temperature in addition to some thermal effects. The reason why flame temperature due to chemical effects is larger in cases of $CO_2$ addition to oxidizer stream is well explained though a defined characteristic strain rate. The produced CO is responsible for the reaction, $CO_2$+H=CO+OH and takes its origin from chemical effects due to thermal dissociation. It is also found that the behavior of produced CO mole fraction is closely related to added $CO_2$ mole fraction, maximum H mole fraction and its position, and maximum flame temperature and its position.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼