RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Object Tracking and Elimination using Level-of-Detail Canny Edge Maps

      한글로보기

      https://www.riss.kr/link?id=A344656

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      We propose a simple method for tracking a nonparameterized subject contour in a single video stream with a moving camera. Then we eliminate the tracked contour object by replacing the background scene we get from other frame that is not occluded by the tracked object. Our method consists of two parts: first we track the object using LOD (Level-of-Detail) canny edge maps, then we generate background of each image frame and replace the tracked object in a scene by a background image from other frame. In order to track a contour object, LOD Canny edge maps are generated by changing scale parameters for a given image. A simple (strong) Canny edge map has the smallest number of edge pixels while the most detailed Canny edge map, Wcanny_(N) , has the largest number of edge pixels. To reduce side-effects because of irrelevant edges, we start our basic tracking by using simple (strong) Canny edges generated from large image intensity gradients of an input image, called Scanny edges. Starting from Scanny edges, we get more edge pixels ranging from simple Canny edge maps until the most detailed (weaker) Canny edge maps, called Wcanny maps along LOD hierarchy. LOD Canny edge pixels become nodes in routing, and LOD values of adjacent edge pixels determine routing costs between the nodes. We find the best route to follow Canny edge pixels favoring stronger Canny edge pixels. The first frame background scene is determined by camera motion, and other background scenes are computed from the previous background scenes.
      번역하기

      We propose a simple method for tracking a nonparameterized subject contour in a single video stream with a moving camera. Then we eliminate the tracked contour object by replacing the background scene we get from other frame that is not occluded by...

      We propose a simple method for tracking a nonparameterized subject contour in a single video stream with a moving camera. Then we eliminate the tracked contour object by replacing the background scene we get from other frame that is not occluded by the tracked object. Our method consists of two parts: first we track the object using LOD (Level-of-Detail) canny edge maps, then we generate background of each image frame and replace the tracked object in a scene by a background image from other frame. In order to track a contour object, LOD Canny edge maps are generated by changing scale parameters for a given image. A simple (strong) Canny edge map has the smallest number of edge pixels while the most detailed Canny edge map, Wcanny_(N) , has the largest number of edge pixels. To reduce side-effects because of irrelevant edges, we start our basic tracking by using simple (strong) Canny edges generated from large image intensity gradients of an input image, called Scanny edges. Starting from Scanny edges, we get more edge pixels ranging from simple Canny edge maps until the most detailed (weaker) Canny edge maps, called Wcanny maps along LOD hierarchy. LOD Canny edge pixels become nodes in routing, and LOD values of adjacent edge pixels determine routing costs between the nodes. We find the best route to follow Canny edge pixels favoring stronger Canny edge pixels. The first frame background scene is determined by camera motion, and other background scenes are computed from the previous background scenes.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼