RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI우수등재

      비올로겐 이온겔 나노섬유의 전기변색 특성 연구 = Enhanced Electrochromic Performance of Viologen Ion Gel Nanofibers

      한글로보기

      https://www.riss.kr/link?id=A107812398

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Electrochromism represents a reversible spectral or optical change owing to the redox reaction on applying potential biases. Here, we present the enhanced electrochromic properties by incorporating nanofiber webs prepared by electrospinning. The electrochromic devices (ECDs) were fabricated by sandwiching the ion gel nanowebs, made up of viologen and electrolyte, between two ITO glasses. The morphology of the nanofibers was examined using a scanning electron microscope. More ionic liquid could be present between randomly arranged nanofibers, resulting in increased ionic mobility. The fabricated ECDs exhibited significantly enhanced electrochromic performances with short switching speeds, high coloration efficiency, and long-term cyclic stability. Current results demonstrate that electrospinning is a practical approach for high-performance electrochromic devices.
      번역하기

      Electrochromism represents a reversible spectral or optical change owing to the redox reaction on applying potential biases. Here, we present the enhanced electrochromic properties by incorporating nanofiber webs prepared by electrospinning. The elect...

      Electrochromism represents a reversible spectral or optical change owing to the redox reaction on applying potential biases. Here, we present the enhanced electrochromic properties by incorporating nanofiber webs prepared by electrospinning. The electrochromic devices (ECDs) were fabricated by sandwiching the ion gel nanowebs, made up of viologen and electrolyte, between two ITO glasses. The morphology of the nanofibers was examined using a scanning electron microscope. More ionic liquid could be present between randomly arranged nanofibers, resulting in increased ionic mobility. The fabricated ECDs exhibited significantly enhanced electrochromic performances with short switching speeds, high coloration efficiency, and long-term cyclic stability. Current results demonstrate that electrospinning is a practical approach for high-performance electrochromic devices.

      더보기

      참고문헌 (Reference)

      1 Y. Tian, "Unconventional Aluminum Ion Intercalation/Deintercalation for Fast Switching and Highly Stable Electrochromism" 25 : 5833-5839, 2015

      2 P. Jia, "Thermal Stability of Ionic Liquid-loaded Electrospun Poly(vinylidene fluoride)Membranes and Its Influences on Performance of Electrochromic Devices" 376 : 283-289, 2011

      3 J. Deitzel, "The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles" 42 : 261-272, 2001

      4 P. M. S. Monk, "The Effect of Ferrocyanide on the Performance of Heptyl Viologen-based Electrochromic Display Devices" 432 : 175-179, 1997

      5 C. Dulgerbaki, "Synergistic Tungsten Oxide/organic Framework Hybrid Nanofibers for Electrochromic Device Application" 70 : 171-179, 2017

      6 R. J. Mortimer, "Organic Electrochromic Materials" 44 : 2971-2981, 1999

      7 G. K. Pande, "Octa-viologen Substituted Polyhedral Oligomeric Silsesquioxane Exhibiting Outstanding Electrochromic Performances" 393 : 124690-, 2020

      8 G. Das, "Multifunctional Redox-tuned Viologen-based Covalent Organic Polymers" 4 : 15361-15369, 2016

      9 H. C. Moon, "Multicolored, Low-power, Flexible Electrochromic Devices Based on Ion Gels" 8 : 6151-6260, 2016

      10 Y. Alesanco, "Multicolor Electrochromics : Rainbow-like Devices" 8 : 14795-14801, 2016

      1 Y. Tian, "Unconventional Aluminum Ion Intercalation/Deintercalation for Fast Switching and Highly Stable Electrochromism" 25 : 5833-5839, 2015

      2 P. Jia, "Thermal Stability of Ionic Liquid-loaded Electrospun Poly(vinylidene fluoride)Membranes and Its Influences on Performance of Electrochromic Devices" 376 : 283-289, 2011

      3 J. Deitzel, "The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles" 42 : 261-272, 2001

      4 P. M. S. Monk, "The Effect of Ferrocyanide on the Performance of Heptyl Viologen-based Electrochromic Display Devices" 432 : 175-179, 1997

      5 C. Dulgerbaki, "Synergistic Tungsten Oxide/organic Framework Hybrid Nanofibers for Electrochromic Device Application" 70 : 171-179, 2017

      6 R. J. Mortimer, "Organic Electrochromic Materials" 44 : 2971-2981, 1999

      7 G. K. Pande, "Octa-viologen Substituted Polyhedral Oligomeric Silsesquioxane Exhibiting Outstanding Electrochromic Performances" 393 : 124690-, 2020

      8 G. Das, "Multifunctional Redox-tuned Viologen-based Covalent Organic Polymers" 4 : 15361-15369, 2016

      9 H. C. Moon, "Multicolored, Low-power, Flexible Electrochromic Devices Based on Ion Gels" 8 : 6151-6260, 2016

      10 Y. Alesanco, "Multicolor Electrochromics : Rainbow-like Devices" 8 : 14795-14801, 2016

      11 D. T. Gillaspie, "Metal-oxide Films for Electrochromic Applications : Present Technology and Future Directions" 20 : 9585-9592, 2010

      12 J. B. Arockiam, "Iron Phthalocyanine Incorporated Metallo-supramolecular Polymer for Superior Electrochromic Performance with High Coloration Efficiency and Switching Stability" 2 : 8416-8424, 2019

      13 K. Wadhwa, "Intramolecular Redoxinduced Dimerization in a Viologen Dendrimer" 1 : 2302-2307, 2013

      14 G. Balamurugan, "Enhanced Electrochromic Properties of Terpyridine-attached Asymmetric Viologen with High Transmittance and Switching Stability" 216 : 110714-, 2020

      15 H. Yu, "Electrospun Nanofibers Composed of Poly(vinylidene fluoride-co-hexafluoropropylene)and Poly(oxyethylene)-imide Imidazolium Tetrafluoroborate as Electrolytes for Solid-state Electrochromic Devices" 177 : 32-43, 2018

      16 S. Ramakrishna, "Electrospun Nanofibers : Solving Global Issues" 9 : 40-50, 2006

      17 C. G. Granqvist, "Electrochromics for Smart Windows : Oxidebased Thin Films and Devices" 564 : 1-38, 2014

      18 R. Rauh, "Electrochromic Windows : An Overview" 44 : 3165-3176, 1999

      19 D. R. Rosseinsky, "Electrochromic Systems and the Prospects for Devices" 13 : 783-793, 2001

      20 C. Dulgerbaki, "Electrochromic Strategy for Tungsten Oxide/Polypyrrole Hybrid Nanofiber Materials" 107 : 173-180, 2018

      21 R. J. Mortimer, "Electrochromic Organic and Polymeric Materials for Display Applications" 27 : 2-18, 2006

      22 P. Yang, "Electrochromic Energy Storage Devices" 19 : 394-402, 2016

      23 T. Pickford, "Effects of an Ionic Liquid and Processing Conditions on the β-polymorph Crystal Formation in Poly(vinylidene fluoride)" 21 : 5418-5428, 2019

      24 G. K. Pande, "Effects of Counter Ions on Electrochromic Behaviors of Asymmetrically Substituted Viologens" 197 : 25-31, 2019

      25 C. Xing, "Effect of a Roomtemperature Ionic Liquid on the Structure and Properties of Electrospun Poly(vinylidene fluoride)Nanofibers" 6 : 4447-4457, 2014

      26 E. Jose, "Designing Solutions for Electrospinning of Poly(ionic liquid)s" 52 : 5223-5230, 2019

      27 K. Murugavel, "Benzylic Viologen Dendrimers : a Review of Their Synthesis, Properties and Applications" 5 : 5873-5884, 2014

      28 T. M. Benedetti, "All Solid-state Electrochromic Device Consisting of a Water Soluble Viologen Dissolved in Gelatin-based Ionogel" 132 : 101-106, 2015

      29 B. Gelinas, "Air-stable, Selfbleaching Electrochromic Device Based on Viologen-and Ferrocene-containing Triflimide Redox Ionic Liquids" 9 : 28726-28736, 2017

      30 H. Lu, "Achieving Low-energy Driven Viologens-based Electrochromic Devices Utilizing Polymeric Ionic Liquids" 8 : 30351-30361, 2016

      31 R. Sydam, "A WO3–poly(butyl viologen)Layer-by-layer Film/ruthenium Purple Film Based Electrochromic Device Switching by 1 Volt Application" 132 : 148-161, 2015

      32 J. M. C. Puguan, "A Switchable Single-molecule Electrochromic Device Derived from a Viologen-tethered Triazolium-based Poly(ionic liquid)" 7 : 21668-21673, 2019

      33 Z. Huang, "A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites" 63 : 2223-2253, 2003

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 계속평가 신청대상 (등재유지)
      2017-01-01 평가 우수등재학술지 선정 (계속평가)
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-09-03 학술지명변경 외국어명 : The Korean Fiber Soceity -> Textile Science and Engineering KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-03-05 학술지명변경 외국어명 : The Korean Fiber Soceity -> Textile Science and Engineering KCI등재
      2003-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.13 0.13 0.15
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.17 0.17 0.29 0.02
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼