RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Accelerator driven subcritical reactors

      한글로보기

      https://www.riss.kr/link?id=M10093588

      • 저자
      • 발행사항

        Bristol ; Philadelphia : Institute of Physics Pub., c2003

      • 발행연도

        2003

      • 작성언어

        영어

      • 주제어
      • DDC

        621.4834 판사항(22)

      • ISBN

        9780750307437
        0750307439

      • 자료형태

        단행본(다권본)

      • 발행국(도시)

        England

      • 서명/저자사항

        Accelerator driven subcritical reactors / H. Nifenecker, O. Meplan and S. David.

      • 형태사항

        ix, 316 p. : ill. ; 25 cm.

      • 총서사항

        Series in fundamental and applied nuclear physics Fundamental and applied nuclear physics series.

      • 일반주기명

        Includes bibliographical references (p. 305-312) and index.

      • 소장기관
        • 경희대학교 국제캠퍼스 도서관 소장기관정보
        • 국립부경대학교 도서관 소장기관정보
        • 국립중앙도서관 국립중앙도서관 우편복사 서비스
        • 성균관대학교 삼성학술정보관 소장기관정보 Deep Link
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      목차 (Table of Contents)

      • CONTENTS
      • 1 Introduction = 1
      • 2 The energy issue = 4
      • 2.1 World energy perspectives = 4
      • 2.1.1 Energy consumptions = 4
      • CONTENTS
      • 1 Introduction = 1
      • 2 The energy issue = 4
      • 2.1 World energy perspectives = 4
      • 2.1.1 Energy consumptions = 4
      • 2.1.2 Fossil reserves = 4
      • 2.1.3 Greenhouse effect = 6
      • 2.2 Renewable energies = 17
      • 2.2.1 Solar energy = 17
      • 2.2.2 Biomass = 18
      • 2.2.3 Wind energy = 19
      • 2.2.4 Hydroelectricity = 19
      • 2.3 Nuclear energy = 20
      • 2.3.1 Standard reactors = 20
      • 2.3.2 Breeder reactors = 23
      • 2.3.3 Nuclear waste disposal options = 24
      • 2.3.4 Deployment of a breeder park = 31
      • 2.4 Costs = 35
      • 2.5 The possible role of accelerator driven subcritical reactors = 36
      • 2.5.1 Safety advantages of subcriticality = 37
      • 2.5.2 Use of additional neutrons = 38
      • 3 Elementary reactor theory = 39
      • 3.1 Interaction of neutrons with nuclei = 39
      • 3.1.1 Elementary processes = 39
      • 3.1.2 Properties of heavy nuclei = 40
      • 3.1.3 Neutron density, flux and reaction rates = 42
      • 3.2 Neutron propagation = 45
      • 3.2.1 Boltzmann equation = 46
      • 3.2.2 Integral form of the Boltzmann equation = 47
      • 3.2.3 Fick's law = 47
      • 3.2.4 Diffusion equation = 49
      • 3.2.5 Slowing down of neutrons = 53
      • 3.3 Neutron multiplying assemblies = 60
      • 3.4 Limiting values = 62
      • 3.4.1 Critical masses = 63
      • 3.4.2 Maximum flux = 66
      • 3.5 Reactor control = 68
      • 3.5.1 Delayed neutrons = 68
      • 3.5.2 Temperature dependence of the reactivity = 73
      • 3.5.3 Critical trip = 76
      • 3.5.4 Residual heat extraction = 78
      • 3.6 Fuel evolution = 81
      • 3.6.1 The Bateman equations = 82
      • 3.6.2 The long-term fuel evolutions = 82
      • 3.7 Basics of waste transmutation = 87
      • 3.7.1 Radiotoxicities = 87
      • 3.7.2 Neutron balance for transmutation and incineration = 88
      • 4 ADSR principles = 93
      • 4.1 Properties of the multiplying medium = 93
      • 4.1.1 Energy gain = 94
      • 4.1.2 Neutron balance = 94
      • 4.1.3 Neutron importance = 97
      • 5 Practical simulation methods = 99
      • 5.1 Neutron reaction data files = 99
      • 5.2 Deterministic methods = 103
      • 5.3 Monte Carlo codes = 104
      • 5.3.1 Deterministic versus Monte Carlo simulation codes = 104
      • 5.3.2 MCNP, a well validated Monte Carlo code = 105
      • 5.4 Physics in MCNP = 105
      • 5.4.1 Precision and variance reduction = 110
      • 5.5 MCNP in practice = 111
      • 5.5.1 Introduction = 111
      • 5.5.2 Units = 111
      • 5.5.3 Input file structure = 111
      • 5.6 Examples = 122
      • 5.6.1 Reactivity calculation = 122
      • 5.6.2 Homogeneous versus heterogeneous cores = 123
      • 5.6.3 Subcritical core = 126
      • 5.6.4 Precision = 132
      • 5.7 Fuel evolution = 133
      • 5.7.1 Evolution constraint = 134
      • 5.7.2 Spatial flux = 134
      • 5.7.3 Special cross-section data = 134
      • 5.7.4 Time step between two MCNPs = 135
      • 6 The neutron source = 138
      • 6.1 Interaction of protons with matter = 138
      • 6.1.1 Electronic energy losses = 138
      • 6.1.2 Nuclear stopping = 139
      • 6.1.3 The nuclear cascade = 140
      • 6.1.4 Experimental tests of the INC models = 142
      • 6.1.5 The neutron source = 148
      • 6.1.6 State of the art of the simulation codes = 154
      • 6.2 Alternative primary neutron production = 155
      • 6.2.1 Deuteron induced neutron production = 155
      • 6.2.2 Muon catalysed fusion = 158
      • 6.2.3 Electron induced neutron production = 159
      • 6.3 Experimental determination of the energy gain = 160
      • 6.4 Two-stage neutron multipliers = 161
      • 6.5 High-intensity accelerators = 164
      • 6.5.1 State of the art of high-intensity accelerators = 165
      • 6.5.2 Requirements for ADSR accelerators = 166
      • 6.5.3 Perspectives for high-intensity accelerators for ADSRs = 168
      • 6.5.4 Examples of high-intensity accelerator concepts = 170
      • 7 ADSR kinetics = 171
      • 8 Reactivity evolutions = 177
      • 8.1 Long-term evolutions = 177
      • 8.2 Short-term reactivity excursions = 177
      • 8.2.1 Protactinium effects = 179
      • 8.2.2 Xenon effect = 181
      • 8.2.3 Temperature effect = 183
      • 8.2.4 Impact of reactivity excursions = 184
      • 9 Fuel reprocessing techniques = 185
      • 9.1 Basics of reprocessing = 185
      • 9.2 Wet processes = 188
      • 9.2.1 The purex process = 188
      • 9.3 Dry processes = 199
      • 9.3.1 Vaporization = 200
      • 9.3.2 Gas purge = 201
      • 9.3.3 Liquid-liquid extraction = 201
      • 9.3.4 Selective precipitation = 204
      • 9.3.5 Electrolysis = 204
      • 10 Generic properties of ADSRs = 209
      • 10.1 The homogeneous spherical reactor = 209
      • 10.1.1 General solution of the diffusion equation = 210
      • 10.1.2 The three-zone reactor = 210
      • 10.1.3 Model calculations = 211
      • 10.2 Parametric study of heterogeneous systems = 213
      • 11 R$$\hat o$$le of hybrid reactors in fuel cycles = 215
      • 11.1 The thorium-uranium cycle = 215
      • 11.1.1 Radiotoxicity = 215
      • 11.1.2 Breeding rates = 217
      • 11.1.3 Doubling time = 219
      • 11.1.4 Transition towards a $$\{}^{232}$$Th-based fuel from the PWR spent fuel, using a fast spectrum and solid fuel = 222
      • 11.1.5 Thorium cycle with thermal spectrum = 225
      • 11.2 Incineration = 229
      • 11.2.1 Plutonium incineration = 229
      • 11.2.2 Minor actinide incineration = 231
      • 11.2.3 Initial reactivity of MA fuels = 232
      • 11.2.4 Fuel evolution = 234
      • 11.2.5 Solid versus liquid fuels = 238
      • 11.2.6 The paradox of minor actinide fuels = 239
      • 12 Ground laying proposals = 242
      • 12.1 Solid fuel reactors = 242
      • 12.1.1 Lead cooled ADSR : the Rubbia proposal = 242
      • 12.2 Molten salt reactors = 246
      • 12.2.1 The Bowman proposal = 246
      • 12.2.2 The TIER concept = 247
      • 12.3 Cost estimates = 249
      • 13 Scenarios for the development of ADSRs = 252
      • 13.1 Experiments = 253
      • 13.1.1 The FEAT experiment = 253
      • 13.1.2 The MUSE experiment = 253
      • 13.2 Demonstrators = 253
      • 13.2.1 Japan = 255
      • 13.2.2 United States = 255
      • 13.2.3 Europe = 256
      • Appendix Ⅰ Deep underground disposal of nuclear waste = 263
      • Ⅰ.1 Model of an underground disposal site = 263
      • Ⅰ.1.2 Radioelement diffusion in geological layers = 264
      • Ⅰ.1.3 Physical model of diffusion in the clay layer = 265
      • Ⅰ.1.4 Simplified solution of the diffusion problem through the clay layer = 266
      • Ⅰ.1.5 Solubility as a limiting factor of the flow of radioactive nuclei = 267
      • Ⅰ.2 Determining the dose to the population = 267
      • Ⅰ.2.1 Some dose determination examples = 268
      • Ⅰ.2.2 Full computation example of the dose at the outlet = 269
      • Ⅰ.3 Accidental intrusion = 271
      • Ⅰ.3.1 Drilled samples = 272
      • Ⅰ.3.2 Using the well to draw drinking water = 272
      • Ⅰ.4 Heat production and sizing of the storage site = 274
      • Ⅰ.4.1 Schematic determination of the temperature distribution = 274
      • Ⅰ.4.2 Examples = 275
      • Ⅰ.5 Geological hazard = 286
      • Ⅰ.6 An underground laboratory. What for? = 276
      • Ⅰ.7 Conclusion = 277
      • Appendix Ⅱ The Chernobyl accident and the RMBK reactors = 279
      • Ⅱ.1 The RBMK-1000 reactor = 279
      • Ⅱ.2 Events leading to the accident = 281
      • Ⅱ.3 The accident = 283
      • Appendix Ⅲ Basics of accelerator physics = 284
      • Ⅲ.1 Linear accelerators = 285
      • Ⅲ.1.1 The Wider$$\ddot o$$e linear accelerator = 285
      • Ⅲ.1.2 The Alvarez or drift tube linac(DTL) = 287
      • Ⅲ.1.3 Phase stability = 293
      • Ⅲ.1.4 Beam focusing = 294
      • Ⅲ1.5 The radio frequency quadrupole(RFQ) = 300
      • Ⅲ.2 Cyclotrons = 300
      • Ⅲ.3 Superconductive solutions = 301
      • Ⅲ.4 Space charge limitations = 302
      • Bibliography = 305
      • Index = 313
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼