RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      스펙트럼사상학습을 이용한 잡음환경에서의 한국어숫자음인식 = Korean Digit Recognition Under Noise Environment Using Spectral Mapping Training

      한글로보기

      https://www.riss.kr/link?id=A101070492

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper presents the Korean digit recognition method under noise environment using the spectral mapping training based on static supervised adaptation algorithm. In the presented recognition method, as a result of spectral mapping from one space of noisy speech spectrum to another space of speech spectrum without noise, spectral distortion of noisy speech is improved, and the recognition rate is higher than that of the conventional method using VQ (vector quatization) and DTW(dynamic time warping) without noise processing, and even when SNR level is 0dB, the recognition rate is 10 times of that using the conventional method. It has been confirmed that the spectral mapping training has an ability to improve the recognition performance for speech in noise environment.
      번역하기

      This paper presents the Korean digit recognition method under noise environment using the spectral mapping training based on static supervised adaptation algorithm. In the presented recognition method, as a result of spectral mapping from one space of...

      This paper presents the Korean digit recognition method under noise environment using the spectral mapping training based on static supervised adaptation algorithm. In the presented recognition method, as a result of spectral mapping from one space of noisy speech spectrum to another space of speech spectrum without noise, spectral distortion of noisy speech is improved, and the recognition rate is higher than that of the conventional method using VQ (vector quatization) and DTW(dynamic time warping) without noise processing, and even when SNR level is 0dB, the recognition rate is 10 times of that using the conventional method. It has been confirmed that the spectral mapping training has an ability to improve the recognition performance for speech in noise environment.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼