RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      Role of the histone deacetylase inhibitor valproic acid in high-fat diet-induced hypertension via inhibition of HDAC1/angiotensin II axis

      한글로보기

      https://www.riss.kr/link?id=A107511186

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Background:Obesity is known as an epidemic worldwide because of consumption of westernized high-fat diets and one of the major risk factors of hypertension. Histone deacetylases (HDACs) control gene expression by regulating histone/non-histone protein deacetylation. HDAC inhibitors exert anti-cancer and anti-inflammatory effects and play a protective role in cardiovascular diseases. In the present study, we tested the effect of an FDA-approved pan-HDAC inhibitor valproic acid (VPA) on high-fat diet (HFD)-induced hypertension in mice. Furthermore, we examined the mechanism of VPA-induced prevention of hypertension.Methods:Nine-week-old male C57BL/6 mice were fed either a normal diet (ND) or HFD. When the HFD group reached a pre-hypertensive phase (130–140 mm Hg systolic blood pressure), VPA was administered for 6 days (300 mg kg<SUP>−1</SUP> per day). Body weights and blood pressure (BP), expression of renin-angiotensin system (RAS) components and HDAC1 were determined. The direct role of HDAC1 in the expression of RAS components was investigated using gene silencing.Results:HFD accelerated the increase in body weight from 22.4±1.3 to 31.9±3.0 compared to in the ND group from 22.7±0.9 to 26.0±1.7 (P=0.0134 ND vs HFD), systolic BP from 118.5±5.7 to 145.0±3.0 (P<0.001), and diastolic BP from 91.0±13.6 to 121.0±5.0 (P=0.006); BP was not altered in the ND group. HFD increased RAS components and HDAC1 in the kidneys as well as leptin in the plasma. VPA administration prevented the progression of hypertension and inhibited the increase in expression of HDAC1 and RAS components. VPA did not affect plasma leptin level. Knockdown of HDAC1 in MDCK cells decreased the expression of angiotensinogen and type 1 angiotensin II receptor.Conclusions:VPA prevented HFD-induced hypertension by downregulating angiotensin II and its receptor via inhibition of HDAC1, offering a novel therapeutic option for HFD-induced hypertension.
      번역하기

      Background:Obesity is known as an epidemic worldwide because of consumption of westernized high-fat diets and one of the major risk factors of hypertension. Histone deacetylases (HDACs) control gene expression by regulating histone/non-histone protein...

      Background:Obesity is known as an epidemic worldwide because of consumption of westernized high-fat diets and one of the major risk factors of hypertension. Histone deacetylases (HDACs) control gene expression by regulating histone/non-histone protein deacetylation. HDAC inhibitors exert anti-cancer and anti-inflammatory effects and play a protective role in cardiovascular diseases. In the present study, we tested the effect of an FDA-approved pan-HDAC inhibitor valproic acid (VPA) on high-fat diet (HFD)-induced hypertension in mice. Furthermore, we examined the mechanism of VPA-induced prevention of hypertension.Methods:Nine-week-old male C57BL/6 mice were fed either a normal diet (ND) or HFD. When the HFD group reached a pre-hypertensive phase (130–140 mm Hg systolic blood pressure), VPA was administered for 6 days (300 mg kg<SUP>−1</SUP> per day). Body weights and blood pressure (BP), expression of renin-angiotensin system (RAS) components and HDAC1 were determined. The direct role of HDAC1 in the expression of RAS components was investigated using gene silencing.Results:HFD accelerated the increase in body weight from 22.4±1.3 to 31.9±3.0 compared to in the ND group from 22.7±0.9 to 26.0±1.7 (P=0.0134 ND vs HFD), systolic BP from 118.5±5.7 to 145.0±3.0 (P<0.001), and diastolic BP from 91.0±13.6 to 121.0±5.0 (P=0.006); BP was not altered in the ND group. HFD increased RAS components and HDAC1 in the kidneys as well as leptin in the plasma. VPA administration prevented the progression of hypertension and inhibited the increase in expression of HDAC1 and RAS components. VPA did not affect plasma leptin level. Knockdown of HDAC1 in MDCK cells decreased the expression of angiotensinogen and type 1 angiotensin II receptor.Conclusions:VPA prevented HFD-induced hypertension by downregulating angiotensin II and its receptor via inhibition of HDAC1, offering a novel therapeutic option for HFD-induced hypertension.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼