RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      깊이 정보를 이용한 영역분할 기반의 다시점 영상 조명보상 기법 = Illumination Compensation Algorithm based on Segmentation with Depth Information for Multi-view Image

      한글로보기

      https://www.riss.kr/link?id=A101325508

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, a new illumination compensation algorithm by segmentation with depth information is proposed to improve the coding efficiency of multi-view images. In the proposed algorithm, a reference image is first segmented into several layers where each layer is composed of objects with a similar depth value. Then we separate objects from each other even in the same layer by labeling each separate region in the layered image. Then, the labeled reference depth image is converted to the position of the distortion image view by using 3D warping algorithm. Finally, we apply an illumination compensation algorithm to each of matched regions in the converted reference view and distorted view. The occlusion regions that occur by 3D warping are also compensated by a global compensation method. Through experimental results, we are able to confirm that the proposed algorithm has better performance to improve coding efficiency.
      번역하기

      In this paper, a new illumination compensation algorithm by segmentation with depth information is proposed to improve the coding efficiency of multi-view images. In the proposed algorithm, a reference image is first segmented into several layers wher...

      In this paper, a new illumination compensation algorithm by segmentation with depth information is proposed to improve the coding efficiency of multi-view images. In the proposed algorithm, a reference image is first segmented into several layers where each layer is composed of objects with a similar depth value. Then we separate objects from each other even in the same layer by labeling each separate region in the layered image. Then, the labeled reference depth image is converted to the position of the distortion image view by using 3D warping algorithm. Finally, we apply an illumination compensation algorithm to each of matched regions in the converted reference view and distorted view. The occlusion regions that occur by 3D warping are also compensated by a global compensation method. Through experimental results, we are able to confirm that the proposed algorithm has better performance to improve coding efficiency.

      더보기

      참고문헌 (Reference)

      1 황선규, "영상 처리 프로그래밍 by Visual C++" 한빛미디어 2007

      2 박성희, "다시점 비디오의 색상 성분 보정을 위한 특징점 기반의 전처리 방법" 한국정보통신학회 15 (15): 2527-2533, 2011

      3 "http://mpeg.chiariglione.org/standards.htm"

      4 S. Yea, "View synthesis prediction for multiview video coding" 24 : 89-100, 2009

      5 Y. Mori, "View generation with 3D warping using depth information for FTV" 24 (24): 65-72, 2009

      6 Y. Mori, "View generation with 3D warping using depth information for FTV" 24 : 65-72, 2009

      7 U. Fecker, "Timeconstant histogram matching for colour compensation of multi-view video sequences" 2007

      8 "Test model under consideration for HEVC based 3D video coding v3.0"

      9 "Test model for AVC-based 3D video coding v2.0"

      10 J. H. Kim, "New coding tools for illumination and focus mismatch compensation in multiview video coding" 17 (17): 1519-1534, 2007

      1 황선규, "영상 처리 프로그래밍 by Visual C++" 한빛미디어 2007

      2 박성희, "다시점 비디오의 색상 성분 보정을 위한 특징점 기반의 전처리 방법" 한국정보통신학회 15 (15): 2527-2533, 2011

      3 "http://mpeg.chiariglione.org/standards.htm"

      4 S. Yea, "View synthesis prediction for multiview video coding" 24 : 89-100, 2009

      5 Y. Mori, "View generation with 3D warping using depth information for FTV" 24 (24): 65-72, 2009

      6 Y. Mori, "View generation with 3D warping using depth information for FTV" 24 : 65-72, 2009

      7 U. Fecker, "Timeconstant histogram matching for colour compensation of multi-view video sequences" 2007

      8 "Test model under consideration for HEVC based 3D video coding v3.0"

      9 "Test model for AVC-based 3D video coding v2.0"

      10 J. H. Kim, "New coding tools for illumination and focus mismatch compensation in multiview video coding" 17 (17): 1519-1534, 2007

      11 M. Gilge, "Motion estimation by scene adaptive block matching and illumination correction, In Image Process" Image Process. Algorithms and Techni., R. J. Moorhead and K. S. Pennington, Eds., Canada 355-366, 1990

      12 Joint Video Team, "Joint draft 3 Multi-view video coding"

      13 "Introduction to 3D video"

      14 Dong-Seok Lee, "Illumination compensation for multi-view video based on layered histogram matching with depth information" 286 : 74-84, 2013

      15 U. Fecker, "Histogram-based pre-filtering for luminance and chrominance compensation of multi-view video" 18 (18): 1258-1267, 2008

      16 "H. 264 Advanced Video Coding for Generic Audiovisual Services"

      17 K. Kamikura, "Global brightness-variation compensation for video coding" 8 (8): 988-1000, 1998

      18 M. Tanimoto, "Free-viewpoint TV" 28 : 67-76, 2011

      19 C. Lee, "Efficient multiview depth video coding using depth synthesis prediction" 50 (50): 1-14, 2011

      20 Y. Su, "Common test conditions for multiview video coding"

      21 "Call for proposals on 3D video coding technology"

      22 J. Lopez, "Block-based illumination compensation and search techniques for multiview video coding" 2004

      23 "Applications and Requirments on FTV"

      24 P. L. Lai, "Adaptive Reference Filtering for MVC" 21-27, 2007

      25 D. Scharstein, "A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms" 131-140, 2001

      26 H. Schwarz, "3D video coding using advanced prediction Depth modeling, and encoder control methods" 1-4, 2012

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2017-12-01 평가 등재후보로 하락 (계속평가) KCI등재후보
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-11-23 학술지명변경 외국어명 : THE JOURNAL OF The KOREAN Institute Of Maritime information & Communication Science -> Journal of the Korea Institute Of Information and Communication Engineering KCI등재
      2011-11-16 학회명변경 영문명 : International Journal of Information and Communication Engineering(IJICE) -> The Korea Institute of Information and Communication Engineering KCI등재
      2011-11-14 학회명변경 한글명 : 한국해양정보통신학회 -> 한국정보통신학회
      영문명 : 미등록 -> International Journal of Information and Communication Engineering(IJICE)
      KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.23 0.23 0.27
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.24 0.22 0.424 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼