RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Comparison of safety margin in LBB design of nuclear pipes based on various types of fracture resistance test specimens

      한글로보기

      https://www.riss.kr/link?id=A107392175

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The geometry of cracked pipe, loading condition and crack size all can have a strong effect on its resistance against crack-tip plastic deformation and crack growth. Usually, specimens listed in test standards (e.g. CT specimen) are applied to evaluat...

      The geometry of cracked pipe, loading condition and crack size all can have a strong effect on its resistance against crack-tip plastic deformation and crack growth. Usually, specimens listed in test standards (e.g. CT specimen) are applied to evaluate the fracture resistance (J-R) curves, which may cause excessive safety margin in leak-before-break (LBB) design of nuclear pipes. In this study, standard (CT) specimen and constraint designed specimens, including curved CT and compact pipe (CP) specimens were applied to measure the J-R curves of nuclear pipes. Finite element analysis (FEA) was applied to derive Jequations to calculate J-R curves for newly designed specimens. Constraint effects in these specimens and full-scale pipes under various loading conditions were compared according to crack-tip plastic deformation level. Then, safety margins in LBB design using these specimens were quantitatively analyzed by constructing the critical crack length lines. Both the tests and FEA results verified the validity of these constraint designed specimens for reducing conservatism.

      더보기

      참고문헌 (Reference)

      1 J. A. Begley, "fracture mechanics" 1-23, 1972

      2 J. Yang, "Unified correlation of in-plane and out-of-plane constraint with fracture resistance of a dissimilar metal welded joint" 115 : 296-307, 2014

      3 Tao Shen, "Transformation of Fracture Resistance Curves by using Bending Modified Q (Qm) Factor" 한국정밀공학회 18 (18): 85-91, 2017

      4 G. Dundulis, "The application of leak before break concept to W7-X target module" 88 (88): 3007-3013, 2013

      5 ASTM, "Standard test method for tension testing of metallic materials"

      6 ASTM, "Standard test method for measurement of fracture toughness"

      7 H. Machida, "Seismic loads for crack stability assessment, in a review of leak-before-break (LBB) applicability" 235 (235): 21-31, 2005

      8 X. K. Zhu, "Review of fracture toughness test methods for ductile materials in low-constraint conditions" 139-140 : 173-183, 2016

      9 J. R. Rice, "Progress in flaw growth and fracture toughness testing" 231-245, 1973

      10 ISO, "Metallic materials-unified method of test for the determination of quasistatic fracture toughness"

      1 J. A. Begley, "fracture mechanics" 1-23, 1972

      2 J. Yang, "Unified correlation of in-plane and out-of-plane constraint with fracture resistance of a dissimilar metal welded joint" 115 : 296-307, 2014

      3 Tao Shen, "Transformation of Fracture Resistance Curves by using Bending Modified Q (Qm) Factor" 한국정밀공학회 18 (18): 85-91, 2017

      4 G. Dundulis, "The application of leak before break concept to W7-X target module" 88 (88): 3007-3013, 2013

      5 ASTM, "Standard test method for tension testing of metallic materials"

      6 ASTM, "Standard test method for measurement of fracture toughness"

      7 H. Machida, "Seismic loads for crack stability assessment, in a review of leak-before-break (LBB) applicability" 235 (235): 21-31, 2005

      8 X. K. Zhu, "Review of fracture toughness test methods for ductile materials in low-constraint conditions" 139-140 : 173-183, 2016

      9 J. R. Rice, "Progress in flaw growth and fracture toughness testing" 231-245, 1973

      10 ISO, "Metallic materials-unified method of test for the determination of quasistatic fracture toughness"

      11 C. Ruggieri, "Low constraint fracture toughness testing using SE(T) and SE(B) specimens" 156 : 23-29, 2017

      12 N. Gong, "Leak-beforebreak analysis of a dis-similar metal welded joint for connecting pipe-nozzle in nuclear power plants" 255 : 1-8, 2013

      13 박건태, "Investigation of the safety evaluation method of piping system" 대한기계학회 33 (33): 3375-3381, 2019

      14 M. Mostafavi, "Fracture of aluminium alloy 2024 under biaxial and triaxial loading" 78 : 1705-1716, 2011

      15 BSI, "Fracture mechanics toughness tests-part 4: method for determination of fracture resistance curves and initiation values for stable crack extension in metallic materials"

      16 K. K. Shi, "Experimental estimation of J integral from load-front face displacement record for compact tension specimens" 44 (44): 219-226, 2016

      17 J. M. Koo, "Evaluation of fracture toughness of nuclear piping using real pipe and tensile compact pipe specimens" 259 : 198-204, 2013

      18 S. Park, "Evaluation of fracture toughness characteristics for nuclear piping using various types of specimens" 90-91 : 9-16, 2012

      19 T. Shen, "Evaluation for fracture resistance curves of nuclear real pipes using curved equivalent stress gradient (curved ESG) specimens" 169 : 89-98, 2017

      20 L. Y. Du, "Effects of local mechanical and fracture properties on LBB behavior of a dissimilar metal welded joint in nuclear power plants" 265 : 145-153, 2013

      21 M. H. Sharobeam, "Development of Eta factors in elastic-plastic fracture testing using a load separation technique" 114-132, 1991

      22 Y. L. Chen, "Crack-tip constraint analyses and constraint-dependent LBB curves for circumferential through-wall cracked pipes" 285 (285): 75-83, 2015

      23 X. K. Zhu, "Bending modified J-Q theory and crack-tip constraint quantification" 141 (141): 115-134, 2006

      24 Z. Liu, "Application of modified normalization method for J-R curve determination using clamped SENT specimens with varying in-plane and out-of-plane constraints" 230 : 106968-, 2020

      25 J. R. Rice, "A path independent integral and the approximate analysis of strain concentration by notches and cracks" 35 : 379-386, 1968

      26 T. Shen, "A further study on fracture resistance evaluation of nuclear pipes using CP specimens" 235 : 107167-, 2020

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼