RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      뇌성마비 환자의 자세 불균형 탐지를 위한 스마트폰 동영상 기반 보행 분석 시스템 = Smartphone-based Gait Analysis System for the Detection of Postural Imbalance in Patients with Cerebral Palsy

      한글로보기

      https://www.riss.kr/link?id=A108565993

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Gait analysis is an important tool in the clinical management of cerebral palsy, allowing for the assessment of condition severity, identification of potential gait abnormalities, planning and evaluation of interventions, and providing a baseline for future comparisons. However, traditional methods of gait analysis are costly and time-consuming, leading to a need for a more convenient and continuous method. This paper proposes a method for analyzing the posture of cerebral palsy patients using only smartphone videos and deep learning models, including a ResNet-based image tilt correction, AlphaPose for human pose estimation, and SmoothNet for temporal smoothing. The indicators employed in medical practice, such as the imbalance angles of shoulder and pelvis and the joint angles of spine-thighs, knees and ankles, were precisely examined. The proposed system surpassed pose estimation alone, reducing the mean absolute error for imbalance angles in frontal videos from 4.196° to 2.971° and for joint angles in sagittal videos from 5.889° to 5.442°.
      번역하기

      Gait analysis is an important tool in the clinical management of cerebral palsy, allowing for the assessment of condition severity, identification of potential gait abnormalities, planning and evaluation of interventions, and providing a baseline for ...

      Gait analysis is an important tool in the clinical management of cerebral palsy, allowing for the assessment of condition severity, identification of potential gait abnormalities, planning and evaluation of interventions, and providing a baseline for future comparisons. However, traditional methods of gait analysis are costly and time-consuming, leading to a need for a more convenient and continuous method. This paper proposes a method for analyzing the posture of cerebral palsy patients using only smartphone videos and deep learning models, including a ResNet-based image tilt correction, AlphaPose for human pose estimation, and SmoothNet for temporal smoothing. The indicators employed in medical practice, such as the imbalance angles of shoulder and pelvis and the joint angles of spine-thighs, knees and ankles, were precisely examined. The proposed system surpassed pose estimation alone, reducing the mean absolute error for imbalance angles in frontal videos from 4.196° to 2.971° and for joint angles in sagittal videos from 5.889° to 5.442°.

      더보기

      참고문헌 (Reference)

      1 이길재 ; 이태수, "의료영상 분석에서 인공지능 이용 동향" 한국방사선학회 16 (16): 453-462, 2022

      2 홍은빈 ; 전준호 ; 조성현 ; 이승용, "딥러닝을 이용한 영상 수평 보정" (사)한국컴퓨터그래픽스학회 23 (23): 95-103, 2017

      3 황수진 ; 하승희, "뇌성마비 아동의 재활치료에 있어서 부모 참여에 대한 고찰" 한국장애인재활협회 부설 재활연구소 17 (17): 309-328, 2013

      4 S. Jin, "Whole-body Human Pose Estimation in the Wild" 196-214, 2020

      5 G. Tolias, "Speeded-up, Relaxed Spatial Matching" 1653-1660, 2011

      6 A. Zeng, "Smoothnet: a Plug-and-play Network for Refining Human Poses in Videos" 625-642, 2022

      7 Z. Cao, "Realtime Multi-person 2d Pose Estimation Using Part Affinity Fields" 7291-7299, 2017

      8 J. H. Shin, "Quantitative Gait Analysis Using a Pose-estimation Algorithm with a Single 2D-video of Parkinson’s Disease Patients" 11 (11): 1271-1283, 2021

      9 Y. Chen, "Monocular Human Pose Estimation: A Survey of Deep Learning-based Methods" 192 (192): 2020

      10 T. Y. Lin, "Microsoft coco:Common Objects in Context" 740-755, 2014

      1 이길재 ; 이태수, "의료영상 분석에서 인공지능 이용 동향" 한국방사선학회 16 (16): 453-462, 2022

      2 홍은빈 ; 전준호 ; 조성현 ; 이승용, "딥러닝을 이용한 영상 수평 보정" (사)한국컴퓨터그래픽스학회 23 (23): 95-103, 2017

      3 황수진 ; 하승희, "뇌성마비 아동의 재활치료에 있어서 부모 참여에 대한 고찰" 한국장애인재활협회 부설 재활연구소 17 (17): 309-328, 2013

      4 S. Jin, "Whole-body Human Pose Estimation in the Wild" 196-214, 2020

      5 G. Tolias, "Speeded-up, Relaxed Spatial Matching" 1653-1660, 2011

      6 A. Zeng, "Smoothnet: a Plug-and-play Network for Refining Human Poses in Videos" 625-642, 2022

      7 Z. Cao, "Realtime Multi-person 2d Pose Estimation Using Part Affinity Fields" 7291-7299, 2017

      8 J. H. Shin, "Quantitative Gait Analysis Using a Pose-estimation Algorithm with a Single 2D-video of Parkinson’s Disease Patients" 11 (11): 1271-1283, 2021

      9 Y. Chen, "Monocular Human Pose Estimation: A Survey of Deep Learning-based Methods" 192 (192): 2020

      10 T. Y. Lin, "Microsoft coco:Common Objects in Context" 740-755, 2014

      11 D. Qiao, "Measuring Heart Rate and Heart Rate Variability with Smartphone Camera" 248-249, 2021

      12 C. Ionescu, "Human3.6m: Large Scale Datasets and Predictive Methods for 3d Human Sensing in Natural Environments" 36 (36): 1325-1339, 2013

      13 J. Li, "Human Pose Regression with Residual Log-likelihood Estimation" 11025-11034, 2021

      14 A. Mirelman, "Gait impairments in Parkinson's Disease" 18 (18): 697-708, 2019

      15 K. Sun, "Deep High-resolution Representation Learning for Human Pose Estimation" 5693-5703, 2019

      16 H. S. Fang, "AlphaPose: Whole-Body Regional Multi-Person Pose Estimation and Tracking in Real-Time" 2022

      17 M. Andriluka, "2d Human Pose Estimation: New Benchmark and State of the Art Analysis" 3686-3693, 2014

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼