RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      스마트 농업의 작물 생존 예측을 위한 인공지능 분석 = (Artificial Intelligence Analysis for Crop Survival Prediction in Smart Agriculture)

      한글로보기

      https://www.riss.kr/link?id=A109634899

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Smart agriculture has been evolving by integrating ICT, IoT, and AI technologies to maximize agricultural productivity and optimize resource utilization. This study aims to predict crop survival in smart agriculture using various machine learning and deep learning models while analyzing and comparing their performance. To achieve this, Random Forest, XGBoost, LightGBM, LSTM, and GRU models were implemented, and their predictive performance was evaluated using accuracy, precision, recall, and F1-score. SHAP analysis was applied to enhance model interpretability and assess the impact of key variables on prediction outcomes. The experimental results indicate that XGBoost and LightGBM demonstrate the highest predictive performance, confirming the effectiveness of tree-based boosting models in crop survival prediction. Notably, SHAP analysis reveals that variables such as pesticide usage type, estimated insect count, and pesticide application frequency significantly influence the prediction results. This study highlights the potential of AI-based predictive models in smart agriculture and emphasizes the importance of optimizing controllable environmental factors to improve crop survival rates.
      번역하기

      Smart agriculture has been evolving by integrating ICT, IoT, and AI technologies to maximize agricultural productivity and optimize resource utilization. This study aims to predict crop survival in smart agriculture using various machine learning and ...

      Smart agriculture has been evolving by integrating ICT, IoT, and AI technologies to maximize agricultural productivity and optimize resource utilization. This study aims to predict crop survival in smart agriculture using various machine learning and deep learning models while analyzing and comparing their performance. To achieve this, Random Forest, XGBoost, LightGBM, LSTM, and GRU models were implemented, and their predictive performance was evaluated using accuracy, precision, recall, and F1-score. SHAP analysis was applied to enhance model interpretability and assess the impact of key variables on prediction outcomes. The experimental results indicate that XGBoost and LightGBM demonstrate the highest predictive performance, confirming the effectiveness of tree-based boosting models in crop survival prediction. Notably, SHAP analysis reveals that variables such as pesticide usage type, estimated insect count, and pesticide application frequency significantly influence the prediction results. This study highlights the potential of AI-based predictive models in smart agriculture and emphasizes the importance of optimizing controllable environmental factors to improve crop survival rates.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼