RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      다수의 고유 공간을 이용한 주화 표면 품질 진단

      한글로보기

      https://www.riss.kr/link?id=A82572528

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      현재 주화의 제조 공정에서는 주화의 표면 품질 진단을 사람이 눈으로 직접 확인하여 수행하고 있다. 본 논문은 컨베이어 벨트에 놓이어 이동하는 주화로부터 획득한 영상을 이용하여 주화 표면의 결함을 검출하는 영상처리 방법을 제시한다. 결함 검출 방법은 영상에서 주화 영역을 분할하고, 분할된 동전을 비교할 모델에 정렬하며, 정렬된 영상을 최적의 고유 영상 공간으로 투영, 투영 오차와 학습된 가변 임계값과 비교하여 결함 부위를 검출한다. 본 논문에서는 이러한 일련의 영상처리 과정 중에서 주화 표면 진단과 관련하여 특화된 새로운 방법을 제시한다. 주화의 정렬을 위하여 분할된 주화의 히스토그램을 사용한다. 이 방법은 2차원 영상의 정렬을 일차원 히스토그램의 정렬로 변환하는 것이다. 다음으로 정렬된 영상을 고유 영상공간에 투영시켜 주화 방향에 따른 휘도 변화를 보정한다. 이 방법은 소수의 고유 영상 벡터들로 구성된 고유 영상 공간을 여러 개 생성하고, 최적의 고유 영상 공간에 정렬된 영상을 투영하여 실시간 구현이 가능하게 한다.
      번역하기

      현재 주화의 제조 공정에서는 주화의 표면 품질 진단을 사람이 눈으로 직접 확인하여 수행하고 있다. 본 논문은 컨베이어 벨트에 놓이어 이동하는 주화로부터 획득한 영상을 이용하여 주화 ...

      현재 주화의 제조 공정에서는 주화의 표면 품질 진단을 사람이 눈으로 직접 확인하여 수행하고 있다. 본 논문은 컨베이어 벨트에 놓이어 이동하는 주화로부터 획득한 영상을 이용하여 주화 표면의 결함을 검출하는 영상처리 방법을 제시한다. 결함 검출 방법은 영상에서 주화 영역을 분할하고, 분할된 동전을 비교할 모델에 정렬하며, 정렬된 영상을 최적의 고유 영상 공간으로 투영, 투영 오차와 학습된 가변 임계값과 비교하여 결함 부위를 검출한다. 본 논문에서는 이러한 일련의 영상처리 과정 중에서 주화 표면 진단과 관련하여 특화된 새로운 방법을 제시한다. 주화의 정렬을 위하여 분할된 주화의 히스토그램을 사용한다. 이 방법은 2차원 영상의 정렬을 일차원 히스토그램의 정렬로 변환하는 것이다. 다음으로 정렬된 영상을 고유 영상공간에 투영시켜 주화 방향에 따른 휘도 변화를 보정한다. 이 방법은 소수의 고유 영상 벡터들로 구성된 고유 영상 공간을 여러 개 생성하고, 최적의 고유 영상 공간에 정렬된 영상을 투영하여 실시간 구현이 가능하게 한다.

      더보기

      다국어 초록 (Multilingual Abstract)

      In a manufacturing process of metal coins, surface defects of coins are manually detected. This paper describes an new method for detecting surface defects of metal coins on a moving conveyor belt using image processing. This method consists of multiple procedures: segmentation of a coin from the background, alignment of the coin to the model, projection of the aligned coin to the best eigen image space, and detection of defects by comparison of the projection error with an adaptive threshold. In these procedures, the alignement and the projection are newly developed in this paper for the detection of coin surface defects. For alignment, we use the histogram of the segmented coin, which converts two-dimensional image alignment to one-dimensional alignment. The projection reduces the intensity variation of the coin image caused by illumination and coin rotation change. For projection, we build multiple eigen image spaces and choose the best eigen space using estimated coin direction. Since each eigen space consists of a small number of eigen image vectors, we can implement the projection in real- time.
      번역하기

      In a manufacturing process of metal coins, surface defects of coins are manually detected. This paper describes an new method for detecting surface defects of metal coins on a moving conveyor belt using image processing. This method consists of multip...

      In a manufacturing process of metal coins, surface defects of coins are manually detected. This paper describes an new method for detecting surface defects of metal coins on a moving conveyor belt using image processing. This method consists of multiple procedures: segmentation of a coin from the background, alignment of the coin to the model, projection of the aligned coin to the best eigen image space, and detection of defects by comparison of the projection error with an adaptive threshold. In these procedures, the alignement and the projection are newly developed in this paper for the detection of coin surface defects. For alignment, we use the histogram of the segmented coin, which converts two-dimensional image alignment to one-dimensional alignment. The projection reduces the intensity variation of the coin image caused by illumination and coin rotation change. For projection, we build multiple eigen image spaces and choose the best eigen space using estimated coin direction. Since each eigen space consists of a small number of eigen image vectors, we can implement the projection in real- time.

      더보기

      목차 (Table of Contents)

      • 요약
      • Abstract
      • Ⅰ. 서론
      • Ⅱ. 주화 표면 품질 진단 과정
      • Ⅲ. 결론
      • 요약
      • Abstract
      • Ⅰ. 서론
      • Ⅱ. 주화 표면 품질 진단 과정
      • Ⅲ. 결론
      • 참고문헌
      • 저자소개
      더보기

      참고문헌 (Reference)

      1 Z. Ibrahim, "Wavelet-based printed circuit board inspection algorithm" 12 : 201-213, 2005

      2 A. Hamamatsu, "Statistical Threshold Method for Semiconductor Wafer Inspection" 2006

      3 J. Q. Li, "Mixture Density Estimation" 279-285, 1999

      4 J. Wilder, "Finding and Evaluating Defects in Glass, In Machine Vision for Inspection and Measurement" Academic Press 1989

      5 K. Choi, "Development of Defect Classification Algorithm for POSCO Rolling Strip Surface Inspection System" 2006

      6 A. Kumar, "Defect Detection in Textured Materials using Gabor Filters" 38 : 425-440, 2002

      7 F. R. Leta, "Computer Vision System for Printed Circuit Board Inspection" 623-632, 2008

      8 W. Y. Wu, "Automated inspection of printed circuit boards through machine vision" 28 (28): 103-111, 1996

      9 H. R. Yazdi, "Applications of 'vision in the loop' for inspection of lace fabric" 4 (4): 317-332, 1998

      10 D. Tsai, "An Eigenvalue-based Similarity Measure and its Application in Defect Detection" 23 (23): 1094-1101, 2005

      1 Z. Ibrahim, "Wavelet-based printed circuit board inspection algorithm" 12 : 201-213, 2005

      2 A. Hamamatsu, "Statistical Threshold Method for Semiconductor Wafer Inspection" 2006

      3 J. Q. Li, "Mixture Density Estimation" 279-285, 1999

      4 J. Wilder, "Finding and Evaluating Defects in Glass, In Machine Vision for Inspection and Measurement" Academic Press 1989

      5 K. Choi, "Development of Defect Classification Algorithm for POSCO Rolling Strip Surface Inspection System" 2006

      6 A. Kumar, "Defect Detection in Textured Materials using Gabor Filters" 38 : 425-440, 2002

      7 F. R. Leta, "Computer Vision System for Printed Circuit Board Inspection" 623-632, 2008

      8 W. Y. Wu, "Automated inspection of printed circuit boards through machine vision" 28 (28): 103-111, 1996

      9 H. R. Yazdi, "Applications of 'vision in the loop' for inspection of lace fabric" 4 (4): 317-332, 1998

      10 D. Tsai, "An Eigenvalue-based Similarity Measure and its Application in Defect Detection" 23 (23): 1094-1101, 2005

      11 I. Matthews, "Active Appearance Models Revisited" 60 (60): 135-164, 2003

      12 T. S. Newan, "A survey of automated visual inspection" 61 (61): 231-262, 1995

      13 J. Yang, "A Robust Hough Transform Algorithm for Determining the Radiation Centers of Circular and Rectangular Fields with Subpixel Accuracy" 54 (54): 555-567, 2009

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2007-05-04 학회명변경 영문명 : The Korea Contents Society -> The Korea Contents Association KCI등재후보
      2007-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2006-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      2004-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.21 1.21 1.26
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.29 1.25 1.573 0.33
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼