NDVI(Normalized Difference Vegetation Index), which is broadly used as short-term data composite, is an important parameter for climate change and long-term land surface monitoring. Although atmospheric correction is performed, NDVI dramatically appea...
NDVI(Normalized Difference Vegetation Index), which is broadly used as short-term data composite, is an important parameter for climate change and long-term land surface monitoring. Although atmospheric correction is performed, NDVI dramatically appears several low peak noise in the long-term time series. They are related to various contaminated sources, such as cloud masking problem and wet ground condition. This study suggests a simple method through harmonic analysis for reducing NDVI noise using SPOT/VGT NDVI 10-day MVC data. The harmonic analysis method is compared with the polynomial regression method suggested previously. The polynomial regression method overestimates the NDVI values in the time series. The proposed method showed an improvement in NDVI correction of low peak and overestimation.