공공시설에 대한 안전점검은 공공시설의 노후화에 따라 정기적인 검사의 필요성이 요구되고 있다. 기존의 안전점검 방식은 대부분 육안으로 점검하는 것에 의존하는데 이는 점검자의 숙련...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A106989103
2020
Korean
567
학술저널
583-586(4쪽)
0
상세조회0
다운로드국문 초록 (Abstract)
공공시설에 대한 안전점검은 공공시설의 노후화에 따라 정기적인 검사의 필요성이 요구되고 있다. 기존의 안전점검 방식은 대부분 육안으로 점검하는 것에 의존하는데 이는 점검자의 숙련...
공공시설에 대한 안전점검은 공공시설의 노후화에 따라 정기적인 검사의 필요성이 요구되고 있다. 기존의 안전점검 방식은 대부분 육안으로 점검하는 것에 의존하는데 이는 점검자의 숙련도에 따라 결과의 품질이 달라지게 된다. 본 논문에서는 XAI 기반의 공공시설물 건전도 안전검사 평가시스템을 제안하며, 이는 점검자의 숙련도와 무관하게 항상 같은 결과를 도출해 내며 XAI 를 통해 사용자에게 안전점검에 대한 결과를 제시해준다. 공공시설물 중 터널 시설물의 안전검사 평가시스템을 기반으로 하는 연구를 진행하였으며 이는 수정없이 교량 시설물 등 다른 공공시설물에 적용이 가능하다. 본 논문은 5 가지로 구분된다. 1) 터널 이미지와 균열에 마스크를 적용한 이미지 두 가지의 데이터 셋을 448x448 로 생성한다. 2) UNet 과 Resnet152 의 두 모델을 적용한 혼합 모델을 이용하여 생성한 데이터 셋을 훈련시킨다. 3) 훈련된 혼합 모델에서 생성된 분할 이미지에 대해 노이즈 제거 과정을 진행한다. 4) 노이즈 제거가 끝난 이미지에 스켈레톤화(Skeletonization)를 적용시켜 균열 이미지의 뼈대를 구한다. 뼈대 이미지 기반으로 균열의 길이, 두께, 위치등의 정보를 얻는다. 5) XAI 부분에서는 뼈대 이미지의 정보를 토대로 균열의 위치, 두께, 길이 등에 대해 계산을 진행한 후 사용자에게 제시해준다.
Guided Grad-CAM 을 이용한 영상 내 송전설비 검출기법
Client-driven Music Genre Classification Framework
Wi-Fi RSSI Heat Maps Based Indoor Localization System Using Deep Convolutional Neural Networks