RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Effects of Composite Porous Gas-Diffusion Layers on Performance of Proton Exchange Membrane Fuel Cell

      한글로보기

      https://www.riss.kr/link?id=A105939493

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The gas diffusion layer (GDL) is an important component of proton-exchange membrane fuel cells (PEMFCs) that participate in the interplay of the transport of different species. During the assembly of PEMFCs, mechanical pressure is applied to the solid...

      The gas diffusion layer (GDL) is an important component of proton-exchange membrane fuel cells (PEMFCs) that participate in the interplay of the transport of different species. During the assembly of PEMFCs, mechanical pressure is applied to the solid boundary of bipolar plates to reduce the porosity of the adjacent GDL, especially under land areas. This variation in porosity reduces reactant consumption in the catalyst layer and primarily causes non-uniform current density in PEMFCs. To compensate for the loss of porosity in the GDL, a composite porous diffusion layer was used as a GDL with higher porosity in the under-land areas of the GDL than that in the under-channel areas. A numerical simulation was conducted to investigate the effect of the positional variation of porosity on the performance of the PEMFC. The overall performance of the cell was investigated through a polarization plot, and the local mass transport of the reactant species was evaluated at the two reaction sites. The introduction of the proposed composite porous GDL improved the performance of the PEMFC by enhancing the transport of the reactant species to and from the reaction site.

      더보기

      참고문헌 (Reference)

      1 Ubong, E., "Three-Dimensional Modeling and Experimental Study of a High Temperature PBI-based PEM Fuel Cell" 156 (156): B1276-B1282, 2009

      2 Cheema, T. A., "Three Dimensional Numerical Investigations for the Effects of Gas Diffusion Layer on PEM Fuel Cell Performance" 36 (36): 529-535, 2011

      3 Roshandel, R., "The Effects of Porosity Distribution Variation on PEM Fuel Cell Performance" 30 (30): 1557-1572, 2005

      4 Roshandel, R., "The Effects of Non-Uniform Distribution of Catalyst Loading on Polymer Electrolyte Membrane Fuel Cell Performance" 32 (32): 4424-4437, 2007

      5 Lee, W. -K., "The Effects of Compression and Gas Diffusion Layers on the Performance of a PEM Fuel Cell" 84 (84): 45-51, 1999

      6 Brinker, C., "Sol-Gel Strategies for Controlled Porosity Inorganic Materials" 94 (94): 85-102, 1994

      7 Springer, T. E., "Polymer Electrolyte Fuel Cell Model" 138 (138): 2334-2342, 1991

      8 Thampan, T., "PEM Fuel Cell as a Membrane Reactor" 67 (67): 15-32, 2001

      9 Dutta, S., "Numerical Prediction of Mass-Exchange between Cathode and Anode Channels in a PEM Fuel Cell" 44 (44): 2029-2042, 2001

      10 Taylor, R., "Multicomponent Mass Transfer" Wiley 1993

      1 Ubong, E., "Three-Dimensional Modeling and Experimental Study of a High Temperature PBI-based PEM Fuel Cell" 156 (156): B1276-B1282, 2009

      2 Cheema, T. A., "Three Dimensional Numerical Investigations for the Effects of Gas Diffusion Layer on PEM Fuel Cell Performance" 36 (36): 529-535, 2011

      3 Roshandel, R., "The Effects of Porosity Distribution Variation on PEM Fuel Cell Performance" 30 (30): 1557-1572, 2005

      4 Roshandel, R., "The Effects of Non-Uniform Distribution of Catalyst Loading on Polymer Electrolyte Membrane Fuel Cell Performance" 32 (32): 4424-4437, 2007

      5 Lee, W. -K., "The Effects of Compression and Gas Diffusion Layers on the Performance of a PEM Fuel Cell" 84 (84): 45-51, 1999

      6 Brinker, C., "Sol-Gel Strategies for Controlled Porosity Inorganic Materials" 94 (94): 85-102, 1994

      7 Springer, T. E., "Polymer Electrolyte Fuel Cell Model" 138 (138): 2334-2342, 1991

      8 Thampan, T., "PEM Fuel Cell as a Membrane Reactor" 67 (67): 15-32, 2001

      9 Dutta, S., "Numerical Prediction of Mass-Exchange between Cathode and Anode Channels in a PEM Fuel Cell" 44 (44): 2029-2042, 2001

      10 Taylor, R., "Multicomponent Mass Transfer" Wiley 1993

      11 Broka, K., "Modelling the PEM Fuel Cell Cathode" 27 (27): 281-289, 1997

      12 Rowe, A., "Mathematical Modeling of Proton Exchange Membrane Fuel Cells" 102 (102): 82-96, 2001

      13 Mathias, M., "Handbook of Fuel Cells Fundamentals, Technology and Applications" John Wiley & Sons 517-537, 2003

      14 Koschany, A., "Gas Diffusion Electrode with Reduced Diffusing Capacity for Water and Polymer Electrolyte Membrane Fuel Cells"

      15 Muthuswamy, S., "Fuel Cell Using Variable Porosity Gas Diffusion Material"

      16 박성범, "Fabrication of Gas Diffusion Layer (GDL) Containing Microporous Layer Using Flourinated Ethylene Prophylene (FEP) for Proton Exchange Membrane Fuel Cell (PEMFC)" 한국정밀공학회 13 (13): 1145-1151, 2012

      17 Mossman, A., "Electrochemical Fuel Cell with Fluid Distribution Layer Having Non-Uniform Permeability"

      18 Chu, H. -S., "Effects of Porosity Change of Gas Diffuser on Performance of Proton Exchange Membrane Fuel Cell" 123 (123): 1-9, 2003

      19 Lin, J. -H., "Effect of Gas Diffusion Layer Compression on the Performance in a Proton Exchange Membrane Fuel Cell" 87 (87): 2420-2424, 2008

      20 Ge, J., "Effect of Gas Diffusion Layer Compression on PEM Fuel Cell Performance" 159 (159): 922-927, 2006

      21 Cussler E. L., "Diffusion-Mass Transfer in Fluid Systems" Cambridge University Press 119-120, 2009

      22 Cheng, C. H., "Design for Geometric Parameters of PEM Fuel Cell by Integrating Computational Fluid Dynamics Code with Optimization Method" 165 (165): 803-813, 2007

      23 Antonietti, M., "Carbon Aerogels and Monoliths : Control of Porosity and Nanoarchitecture via Sol-Gel Routes" 26 (26): 196-210, 2014

      24 Gurau, V., "An Analytical Solution of a Half-Cell Model for PEM Fuel Cells" 147 (147): 2468-2477, 2000

      25 Bernardi, D. M., "A Mathematical Model of the Solid Polymer Electrolyte Fuel Cell" 139 (139): 2477-2491, 1992

      26 Stockie, J. M., "A Finite Volume Method for Multicomponent Gas Transport in a Porous Fuel Cell Electrode" 41 (41): 577-599, 2003

      27 Brinkman, H. C., "A Calculation of the Viscous Force Exerted by a Flowing Fluid on a Dense Swarm of Particles" 1 (1): 27-34, 1949

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2015-04-01 평가 SCIE 등재 (기타) KCI등재
      2008-06-23 학회명변경 영문명 : Korean Society Of Precision Engineering -> Korean Society for Precision Engineering
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 3.62 2.24 0
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0 0 0 0.21
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼