RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      전력손실 최소화를 위한 심층 강화학습 기반 배전계통 재구성 = Distribution Network Reconfiguration to Minimize Power Loss Using Deep Reinforcement Learning

      한글로보기

      https://www.riss.kr/link?id=A107115910

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Distribution network reconfiguration (DNR) is a technique that changes the status of sectionalizing and tie switches for various purposes such as loss minimization, voltage profile improvement, load leveling, and hosting capacity increase. Although previous algorithms for DNR show good performance, they still have practical limitations. Most of the algorithms assumed that a central coordinator knows all parameters and/or perfect states in a distribution network. Reinforcement learning which is a model-free optimization technique can be a key way to overcome these limitations. This work proposes a DNR scheme using deep reinforcement learning to minimize power loss defined by the amount of line loss and renewable energy curtailment. We model the DNR problem as a Markov decision process (MDP) problem and apply the reinforcement learning algorithm to solve this problem in real-time.
      Simulation result using 33-bus radial distribution system shows that the proposed scheme shows similar performance compared to an existing method which uses all information on the distribution network
      번역하기

      Distribution network reconfiguration (DNR) is a technique that changes the status of sectionalizing and tie switches for various purposes such as loss minimization, voltage profile improvement, load leveling, and hosting capacity increase. Although pr...

      Distribution network reconfiguration (DNR) is a technique that changes the status of sectionalizing and tie switches for various purposes such as loss minimization, voltage profile improvement, load leveling, and hosting capacity increase. Although previous algorithms for DNR show good performance, they still have practical limitations. Most of the algorithms assumed that a central coordinator knows all parameters and/or perfect states in a distribution network. Reinforcement learning which is a model-free optimization technique can be a key way to overcome these limitations. This work proposes a DNR scheme using deep reinforcement learning to minimize power loss defined by the amount of line loss and renewable energy curtailment. We model the DNR problem as a Markov decision process (MDP) problem and apply the reinforcement learning algorithm to solve this problem in real-time.
      Simulation result using 33-bus radial distribution system shows that the proposed scheme shows similar performance compared to an existing method which uses all information on the distribution network

      더보기

      참고문헌 (Reference)

      1 김영환, "재생에너지의 전력계통 수용 증대를 위한 ESS 운영방안" 대한전기학회 67 (67): 1401-1407, 2018

      2 명호산, "재생에너지 출력제한에 따른 출력량 배분 방안 연구" 한국전기전자학회 23 (23): 173-180, 2019

      3 Ministry of Trade, Industry and Energy, the Republic of Korea, "재생에너지 3020 이행계획(안) 발표"

      4 Q. Yang, "Two-Timescale Voltage Control in Distribution Grids Using Deep Reinforcement Learning" 11 (11): 2313-2323, 2020

      5 M. Bellemare, "The arcade learning environment : An evaluation platform for general agents" 47 : 253-279, 2013

      6 J. Kober, "Reinforcement learning in robotics : a survey" 32 (32): 1238-1278, 2013

      7 S. Kim, "Reinforcement learning based energy management algorithm for smart energy buildings" 11 (11): 2010-, 2018

      8 T. Markvart, "Practical handbook of photovoltaics : fundamentals and applications" Elsevier 49-51, 2003

      9 V. Mnih, "Playing atari with deep reinforcement learning"

      10 M. Mosbah, "Optimum dynamic distribution network reconfiguration using minimum spanning tree algorithm" 1-6, 2017

      1 김영환, "재생에너지의 전력계통 수용 증대를 위한 ESS 운영방안" 대한전기학회 67 (67): 1401-1407, 2018

      2 명호산, "재생에너지 출력제한에 따른 출력량 배분 방안 연구" 한국전기전자학회 23 (23): 173-180, 2019

      3 Ministry of Trade, Industry and Energy, the Republic of Korea, "재생에너지 3020 이행계획(안) 발표"

      4 Q. Yang, "Two-Timescale Voltage Control in Distribution Grids Using Deep Reinforcement Learning" 11 (11): 2313-2323, 2020

      5 M. Bellemare, "The arcade learning environment : An evaluation platform for general agents" 47 : 253-279, 2013

      6 J. Kober, "Reinforcement learning in robotics : a survey" 32 (32): 1238-1278, 2013

      7 S. Kim, "Reinforcement learning based energy management algorithm for smart energy buildings" 11 (11): 2010-, 2018

      8 T. Markvart, "Practical handbook of photovoltaics : fundamentals and applications" Elsevier 49-51, 2003

      9 V. Mnih, "Playing atari with deep reinforcement learning"

      10 M. Mosbah, "Optimum dynamic distribution network reconfiguration using minimum spanning tree algorithm" 1-6, 2017

      11 J. Z. Zhu, "Optimal reconfiguration of electrical distribution network using the refined genetic algorithm" 62 (62): 37-42, 2002

      12 D. Silver, "Mastering the Game of Go without Human Knowledge" 550 : 354-359, 2017

      13 S. S. Gu, "Interpolated policy gradient : Merging on-policy and off-policy gradient estimation for deep reinforcement learning" 3846-3855, 2017

      14 S. Kim, "Increasing Hosting Capacity of Distribution Feeders by Analysis of Generation and Consumption" 5 (5): 295-309, 2019

      15 J. Seuss, "Improving distribution network PV hosting capacity via smart inverter reactive power support" 1-5, 2015

      16 B. Novoselnik, "Dynamic reconfiguration of electrical power distribution systems with distributed generation and storage" 48 (48): 136-141, 2015

      17 F. V. Dantas, "Dynamic reconfiguration of distribution network systems:A key flexibility option for res integration" 1-6, 2017

      18 Y. Gao, "Dynamic Distribution Network Reconfiguration Using Reinforcement Learning" 1-7, 2019

      19 A. G. Patel, "Distribution network reconfiguration for loss reduction" IEEE 3937-3941, 2016

      20 T. Li, "Deep Reinforcement Learning Based Residential Demand Side Management With Edge Computing" IEEE 1-6, 2019

      21 F. Capitanescu, "Assessing the potential of network reconfiguration to improve distributed generation hosting capacity in active distribution systems" 30 (30): 346-356, 2014

      22 E. A. Feinberg, "A rolling horizon approach to distribution feeder reconfiguration with switching costs" IEEE 339-344, 2011

      23 M. M. Haque, "A review of high PV penetrations in LV distribution networks : Present status, impacts and mitigation measures" 62 : 1195-1208, 2016

      24 A. M. Imran, "A new power system reconfiguration scheme for power loss minimization and voltage profile enhancement using fireworks algorithm" 62 : 312-322, 2014

      25 Iowa State University, "A Real 240-Node Distribution System with One-Year Smart Meter Data"

      26 Ministry of Trade, Industry and Energy, the Republic of Korea, "1 MW 이하 소규모 신재생발전 전력망 접속보장"

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 학술지 통합 (기타) KCI등재
      2001-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.27 0.27 0.24
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.21 0.19 0.366 0.08
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼