RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Electromagnetic propagation in nanostructures

      한글로보기

      https://www.riss.kr/link?id=A104498996

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Future integrated circuit technology will feature a fusion of optical and optoelectronic components with traditional electronic
      devices. Information can be rapidly transmitted as light in dielectric waveguides, photonic crystal guides and metallic
      nanoarrays. This paper presents a description of electromagnetic propagation in semiconductor and metallic nanostructures.
      Diffraction effects will dominate the propagation of light when the dimension of the cavity or device approaches its wavelength.
      The plasmonic effect circumvents this problem by propagating the light wave through highly localized conduction electrons
      in a noble metal [1].
      번역하기

      Future integrated circuit technology will feature a fusion of optical and optoelectronic components with traditional electronic devices. Information can be rapidly transmitted as light in dielectric waveguides, photonic crystal guides and metallic n...

      Future integrated circuit technology will feature a fusion of optical and optoelectronic components with traditional electronic
      devices. Information can be rapidly transmitted as light in dielectric waveguides, photonic crystal guides and metallic
      nanoarrays. This paper presents a description of electromagnetic propagation in semiconductor and metallic nanostructures.
      Diffraction effects will dominate the propagation of light when the dimension of the cavity or device approaches its wavelength.
      The plasmonic effect circumvents this problem by propagating the light wave through highly localized conduction electrons
      in a noble metal [1].

      더보기

      다국어 초록 (Multilingual Abstract)

      Future integrated circuit technology will feature a fusion of optical and optoelectronic components with traditional electronic devices. Information can be rapidly transmitted as light in dielectric waveguides, photonic crystal guides and metallic nanoarrays. This paper presents a description of electromagnetic propagation in semiconductor and metallic nanostructures.
      Diffraction effects will dominate the propagation of light when the dimension of the cavity or device approaches its wavelength.
      The plasmonic effect circumvents this problem by propagating the light wave through highly localized conduction electrons in a noble metal [1].
      번역하기

      Future integrated circuit technology will feature a fusion of optical and optoelectronic components with traditional electronic devices. Information can be rapidly transmitted as light in dielectric waveguides, photonic crystal guides and metallic nan...

      Future integrated circuit technology will feature a fusion of optical and optoelectronic components with traditional electronic devices. Information can be rapidly transmitted as light in dielectric waveguides, photonic crystal guides and metallic nanoarrays. This paper presents a description of electromagnetic propagation in semiconductor and metallic nanostructures.
      Diffraction effects will dominate the propagation of light when the dimension of the cavity or device approaches its wavelength.
      The plasmonic effect circumvents this problem by propagating the light wave through highly localized conduction electrons in a noble metal [1].

      더보기

      참고문헌 (Reference)

      1 E. Ozbay, 331 : 189-193, 2006

      2 M. A. Mastro, 253 : 6157-6161, 2007

      3 M. A. Mastro, 45 : L814-L816, 2006

      4 M. A. Mastro, 18 : 265401-, 2007

      5 A. Neogi, 15 : 1252-1255, 2004

      6 M. A. Mastro, 24 : 1631-1634, 2006

      7 M. A. Mastro, 80 : 241103-, 2005

      8 A. Neogi, 2 : 10-14, 2003

      9 E. Purcell, 69 : 37-38, 1946

      10 K. Okamoto, 23 : 1674-1678, 2006

      1 E. Ozbay, 331 : 189-193, 2006

      2 M. A. Mastro, 253 : 6157-6161, 2007

      3 M. A. Mastro, 45 : L814-L816, 2006

      4 M. A. Mastro, 18 : 265401-, 2007

      5 A. Neogi, 15 : 1252-1255, 2004

      6 M. A. Mastro, 24 : 1631-1634, 2006

      7 M. A. Mastro, 80 : 241103-, 2005

      8 A. Neogi, 2 : 10-14, 2003

      9 E. Purcell, 69 : 37-38, 1946

      10 K. Okamoto, 23 : 1674-1678, 2006

      11 J. Aizpurua, 90 : 057401-, 2003

      12 J. Aizpurua, 71 : 235420-, 2005

      13 S. Link, 103 : 8410-8426, 1999

      14 M. A. Mastro,

      15 A. A. Govyadinov, 97 : 223902-, 2006

      16 A. V. Maslov, 99 : 024314-, 2006

      17 A. V. Maslov, 29 : 572-574, 2004

      18 A. V. Maslov, 406 : 1389-1397, 2004

      19 P. B. Johnson, 6 : 4370-4379, 1972

      20 J. Kottmann, 6 : 213-219, 2000

      21 J. Kottmann, 8 : 655-663, 2001

      22 S. A. Maier, 98 : 011101-, 2005

      23 J. Lee, 45 : 4819-4823, 2006

      24 S. Link, 19 : 409-453, 2000

      25 G. Leveque, 14 : 9971-9981, 2006

      26 S. Wedge, 12 : 3673-3685, 2004

      27 G. B. Airy, 5 : 283-291, 1835

      28 A. Graff, 34 : 263-269, 2005

      29 E. N. Economou, 182 : 539-554, 1969

      30 K. Yee, 14 : 302-307, 1966

      31 J. Berenger, 114 : 185-200, 1994

      32 M. A. Mastro, 100 : 093510-, 2006

      33 M. A. Mastro, 287 : 610-614, 2006

      34 H. Xu, 62 : 4318-4324, 2000

      35 H. Raether, "Surface Plasmons, vol. 111 of Springer-Verlag Tracts in Modern Physics" Springer-Verlag 1988

      36 H. Raither, "Surface Plasmons on Smooth and Rough Surfaces and on gratings" Springer 1988

      37 G. C. Southworth, "Principles and Applications of Waveguide Transmission" D. Van Mostrand Company 1950

      38 U. Kreibig, "Optical Poperties of Metal Clusters" Springer 1995

      39 T. Okoshi, "Optical Fibers" Academic Press 1982

      40 H. C. van de Hulst, "Light scattering by small particles" Dover 1981

      41 C. Kittel, "Introduction to Solid State Physics" Wiley 1996

      42 A. Stratton, "Electromagnetic Theory" McGraw-Hill 1941

      43 G. Mie, "Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen" 25 : 377-445, 1908

      44 C. A. Balanis, "Advanced Engineering Electromagnetics" Wiley 1989

      45 C. F. Bohren, "Absorption and Scattering of Light by Small Particles" Wiley 1983

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2022-10-24 학회명변경 한글명 : 세라믹연구소 -> 청정에너지연구소
      영문명 : Ceramic Research Institute -> Clean-Energy Research Institute
      KCI등재
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2019-08-19 학회명변경 한글명 : 세라믹공정연구센터 -> 세라믹연구소
      영문명 : Ceramic Processing Research Center -> Ceramic Research Institute
      KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 SCI 등재 (등재후보1차) KCI등재
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0 0 0
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0 0 0 0
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼