RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      스트림 데이터의 윈도우 기반 분류 = A Window-Based Classification of Stream Data

      한글로보기

      https://www.riss.kr/link?id=A107342827

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      센서와 모바일 기술의 발달로 인해 다양한 센서에서 수집된 스트림 데이터를 처리하는 연구들이 많이 수행되고 있다. 다차원 속성의 스트림 데이터는 센서에서 주기적으로 수집되어 버퍼링 후 처리되기 때문에 기존의 투플 기반의 데이터 분류 기법에 적합하지 않다. 따라서 이 논문에서는 윈도우 기반의 스트림 데이터 분류를 위해 각 속성의 평균과 표준편차 값을 이용하여 투플 기반으로 변환하는 기법을 제안한다. 제안된 기법의 타당성은 투플 기반 데이터 분류 기법(의사결정트리, 단순 베이지안 분류기, 베이지안 신뢰 네트워크)에 의한 정확도 측정에 기반 한다. 로봇에서 수집된 센서 데이터를 이용한 실험 결과, 높은 정확도로 제안된 기법이 타당함을 증명하였으며 베이지안 신뢰 네트워크 기법이 다른 기법에 비해 우수함을 발견하였다.
      번역하기

      센서와 모바일 기술의 발달로 인해 다양한 센서에서 수집된 스트림 데이터를 처리하는 연구들이 많이 수행되고 있다. 다차원 속성의 스트림 데이터는 센서에서 주기적으로 수집되어 버퍼링...

      센서와 모바일 기술의 발달로 인해 다양한 센서에서 수집된 스트림 데이터를 처리하는 연구들이 많이 수행되고 있다. 다차원 속성의 스트림 데이터는 센서에서 주기적으로 수집되어 버퍼링 후 처리되기 때문에 기존의 투플 기반의 데이터 분류 기법에 적합하지 않다. 따라서 이 논문에서는 윈도우 기반의 스트림 데이터 분류를 위해 각 속성의 평균과 표준편차 값을 이용하여 투플 기반으로 변환하는 기법을 제안한다. 제안된 기법의 타당성은 투플 기반 데이터 분류 기법(의사결정트리, 단순 베이지안 분류기, 베이지안 신뢰 네트워크)에 의한 정확도 측정에 기반 한다. 로봇에서 수집된 센서 데이터를 이용한 실험 결과, 높은 정확도로 제안된 기법이 타당함을 증명하였으며 베이지안 신뢰 네트워크 기법이 다른 기법에 비해 우수함을 발견하였다.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼