RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS

      Genetic Landscape of Open Chromatin in Yeast

      한글로보기

      https://www.riss.kr/link?id=A107608275

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <▼1><P>Chromatin regulation underlies a variety of DNA metabolism processes, including transcription, recombination, repair, and replication. To perform a quantitative genetic analysis of chromatin accessibility, we obtained open chromat...

      <▼1><P>Chromatin regulation underlies a variety of DNA metabolism processes, including transcription, recombination, repair, and replication. To perform a quantitative genetic analysis of chromatin accessibility, we obtained open chromatin profiles across 96 genetically different yeast strains by FAIRE (formaldehyde-assisted isolation of regulatory elements) assay followed by sequencing. While 5∼10% of open chromatin region (OCRs) were significantly affected by variations in their underlying DNA sequences, subtelomeric areas as well as gene-rich and gene-poor regions displayed high levels of sequence-independent variation. We performed quantitative trait loci (QTL) mapping using the FAIRE signal for each OCR as a quantitative trait. While individual OCRs were associated with a handful of specific genetic markers, gene expression levels were associated with many regulatory loci. We found multi-target <I>trans</I>-loci responsible for a very large number of OCRs, which seemed to reflect the widespread influence of certain chromatin regulators. Such regulatory hotspots were enriched for known regulatory functions, such as recombinational DNA repair, telomere replication, and general transcription control. The OCRs associated with these multi-target <I>trans</I>-loci coincided with recombination hotspots, telomeres, and gene-rich regions according to the function of the associated regulators. Our findings provide a global quantitative picture of the genetic architecture of chromatin regulation.</P></▼1><▼2><P><B>Author Summary</B></P><P>Quantitative trait loci (QTL) mapping is a genetic approach that allows the identification of genetic factors underlying a phenotype of interest. Genomic technologies such as DNA microarray and next-generation sequencing provide data that can be used for the analysis of multiple molecular phenotypes. For example, the expression levels of thousands of genes can be associated with subject-specific genome-wide genetic information in expression QTL mapping. Similarly, the genetic regulation of transcription factor binding or epigenetic mechanisms such as DNA methylation or chromatin structure has begun to be investigated. In particular, the mechanisms controlling chromatin accessibility have attracted special interest due to their importance in a variety of DNA regulation processes including recombination, repair, replication, and transcription. In this work, we sought to dissect the genetic architecture of chromatin accessibility regulation by harnessing the power of genetic and genomic techniques. By analyzing open (accessible) chromatin maps of multiple yeast individuals in association with their genetic backgrounds, we were able to characterize the regulatory structure of chromatin traits versus that of gene expression. Importantly, we observed that the genetic loci responsible for multiple open chromatin regions were enriched for known regulatory factors.</P></▼2>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼