RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      DNN 과 LSTM 기반의 대기질 예측 모델 성능 비교 연구 = A comparative Study on the Performance of Air Quality Prediction Model Based on DNN and LSTM

      한글로보기

      https://www.riss.kr/link?id=A107295747

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      최근 인공지능을 활용한 대기질 예측 모델 개발 연구가 활발히 진행 중이다. 특히 시계열 데이터 기반 예측 시스템 개발에 장점을 가진 DNN, LSTM 알고리즘을 활용한 다양한 예측 시스템이 제안되고 있다. 본 논문에서는 LSTM을 활용한 모델과 Fully-Connected 기반의 DNN 모델을 활용한 대기질 예측 시스템을 개발하고 두 모델의 예측 정확도를 비교한다. 성능 평가 결과를 보면 LSTM 모델이 DNN 모델보다 모든 면에서 좋은 결과를 보여줬다. 그리고 이산화황(SO<sub>2</sub>), 이산화질소(NO<sub>2</sub>), 초미세먼지 (PM<sub>2.5</sub>)에 대해서는 그 차이가 두드러지게 나타났다.
      번역하기

      최근 인공지능을 활용한 대기질 예측 모델 개발 연구가 활발히 진행 중이다. 특히 시계열 데이터 기반 예측 시스템 개발에 장점을 가진 DNN, LSTM 알고리즘을 활용한 다양한 예측 시스템이 제...

      최근 인공지능을 활용한 대기질 예측 모델 개발 연구가 활발히 진행 중이다. 특히 시계열 데이터 기반 예측 시스템 개발에 장점을 가진 DNN, LSTM 알고리즘을 활용한 다양한 예측 시스템이 제안되고 있다. 본 논문에서는 LSTM을 활용한 모델과 Fully-Connected 기반의 DNN 모델을 활용한 대기질 예측 시스템을 개발하고 두 모델의 예측 정확도를 비교한다. 성능 평가 결과를 보면 LSTM 모델이 DNN 모델보다 모든 면에서 좋은 결과를 보여줬다. 그리고 이산화황(SO<sub>2</sub>), 이산화질소(NO<sub>2</sub>), 초미세먼지 (PM<sub>2.5</sub>)에 대해서는 그 차이가 두드러지게 나타났다.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼