RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCIE SCOPUS KCI등재

      MORPHISMS OF VARIETIES OVER AMPLE FIELDS

      한글로보기

      https://www.riss.kr/link?id=A105549081

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      We strengthen a result of Michiel Kosters by proving the following theorems: (*) Let ${\phi}:W{\rightarrow}V$ be a finite surjective morphism of algebraic varieties over an ample field K. Suppose V has a simple K-rational point a such that $a{\not\in}{\phi}(W(K_{ins}))$. Then, card($V(K){\backslash}{\phi}(W(K))$ = card(K). (**) Let K be an infinite field of positive characteristic and let $f{\in}K[X]$ be a non-constant monic polynomial. Suppose all zeros of f in $\tilde{K}$ belong to $K_{ins}{\backslash}K$. Then, card(K \ f(K)) = card(K).
      번역하기

      We strengthen a result of Michiel Kosters by proving the following theorems: (*) Let ${\phi}:W{\rightarrow}V$ be a finite surjective morphism of algebraic varieties over an ample field K. Suppose V has a simple K-rational point a such that $a{\not\in}...

      We strengthen a result of Michiel Kosters by proving the following theorems: (*) Let ${\phi}:W{\rightarrow}V$ be a finite surjective morphism of algebraic varieties over an ample field K. Suppose V has a simple K-rational point a such that $a{\not\in}{\phi}(W(K_{ins}))$. Then, card($V(K){\backslash}{\phi}(W(K))$ = card(K). (**) Let K be an infinite field of positive characteristic and let $f{\in}K[X]$ be a non-constant monic polynomial. Suppose all zeros of f in $\tilde{K}$ belong to $K_{ins}{\backslash}K$. Then, card(K \ f(K)) = card(K).

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼