RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      AREA 활용 전력수요 단기 예측 = Short-term Forecasting of Power Demand based on AREA

      한글로보기

      https://www.riss.kr/link?id=A103577444

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      It is critical to forecast the maximum daily and monthly demand for power with as little error as possible for our industry and national economy. In general, long-term forecasting of power demand has been studied from both the consumer’s perspective and an econometrics model in the form of a generalized linear model with predictors. Time series techniques are used for short-term forecasting with no predictors as predictors must be predicted prior to forecasting response variables and containing estimation errors during this process is inevitable. In previous researches, seasonal exponential smoothing method, SARMA (Seasonal Auto Regressive Moving Average) with consideration to weekly pattern Neuron-Fuzzy model, SVR (Support Vector Regression) model with predictors explored through machine learning, and K-means clustering technique in the various approaches have been applied to short-term power supply forecasting. In this paper, SARMA and intervention model are fitted to forecast the maximum power load daily, weekly, and monthly by using the empirical data from 2011 through 2013. ARMA(2, 1, 2)(1, 1, 1)7 and ARMA(0, 1, 1)(1, 1, 0)12 are fitted respectively to the daily and monthly power demand, but the weekly power demand is not fitted by AREA because of unit root series. In our fitted intervention model, the factors of long holidays, summer and winter are significant in the form of indicator function. The SARMA with MAPE (Mean Absolute Percentage Error) of 2.45% and intervention model with MAPE of 2.44% are more efficient than the present seasonal exponential smoothing with MAPE of about 4%. Although the dynamic repression model with the predictors of humidity, temperature, and seasonal dummies was applied to foretaste the daily power demand, it lead to a high MAPE of 3.5% even though it has estimation error of predictors.
      번역하기

      It is critical to forecast the maximum daily and monthly demand for power with as little error as possible for our industry and national economy. In general, long-term forecasting of power demand has been studied from both the consumer’s perspective...

      It is critical to forecast the maximum daily and monthly demand for power with as little error as possible for our industry and national economy. In general, long-term forecasting of power demand has been studied from both the consumer’s perspective and an econometrics model in the form of a generalized linear model with predictors. Time series techniques are used for short-term forecasting with no predictors as predictors must be predicted prior to forecasting response variables and containing estimation errors during this process is inevitable. In previous researches, seasonal exponential smoothing method, SARMA (Seasonal Auto Regressive Moving Average) with consideration to weekly pattern Neuron-Fuzzy model, SVR (Support Vector Regression) model with predictors explored through machine learning, and K-means clustering technique in the various approaches have been applied to short-term power supply forecasting. In this paper, SARMA and intervention model are fitted to forecast the maximum power load daily, weekly, and monthly by using the empirical data from 2011 through 2013. ARMA(2, 1, 2)(1, 1, 1)7 and ARMA(0, 1, 1)(1, 1, 0)12 are fitted respectively to the daily and monthly power demand, but the weekly power demand is not fitted by AREA because of unit root series. In our fitted intervention model, the factors of long holidays, summer and winter are significant in the form of indicator function. The SARMA with MAPE (Mean Absolute Percentage Error) of 2.45% and intervention model with MAPE of 2.44% are more efficient than the present seasonal exponential smoothing with MAPE of about 4%. Although the dynamic repression model with the predictors of humidity, temperature, and seasonal dummies was applied to foretaste the daily power demand, it lead to a high MAPE of 3.5% even though it has estimation error of predictors.

      더보기

      참고문헌 (Reference)

      1 심성철, "제한적 시장을 가지는 천연자원의 가격예측 모형에 관한 연구" 한국산업경영시스템학회 37 (37): 82-89, 2014

      2 정현우, "전력계통 유지보수 및 운영을 위한 향후 4주의 일 최대 전력수요예측" 대한전기학회 63 (63): 1497-1502, 2014

      3 송경빈, "시간대별 기온을 이용한 전력수요예측 알고리즘 개발" 대한전기학회 63 (63): 451-454, 2014

      4 권세혁, "보 지역 홍수 위험도 예측모형 연구" 한국산업경영시스템학회 37 (37): 91-95, 2014

      5 최상열, "데이터마이닝을 이용한 단기부하예측" 한국조명.전기설비학회 21 (21): 126-133, 2007

      6 박영진, "뉴로-퍼지 모델 기반 전력 수요 예측 시스템: 시간,일간,주간 단위 예측" 한국지능시스템학회 14 (14): 533-538, 2004

      7 Box, E. P., "Time Series Analysis : Forecasting and Control" Wiley 2015

      8 Cheol-Hong Kim, "Short-term Electric Load Forecasting Using Data Mining Technique" 대한전기학회 7 (7): 807-813, 2012

      9 Ministry of Governmen Legislation, "Procedure of forecasting power demand" National Law 2011

      10 Kim, C. H., "Forecasting of Domestic Power Demand using Multiple Seasonal Exponential Smoothing Techniques, The annual report of Korea Enright Economics Institute" 2013

      1 심성철, "제한적 시장을 가지는 천연자원의 가격예측 모형에 관한 연구" 한국산업경영시스템학회 37 (37): 82-89, 2014

      2 정현우, "전력계통 유지보수 및 운영을 위한 향후 4주의 일 최대 전력수요예측" 대한전기학회 63 (63): 1497-1502, 2014

      3 송경빈, "시간대별 기온을 이용한 전력수요예측 알고리즘 개발" 대한전기학회 63 (63): 451-454, 2014

      4 권세혁, "보 지역 홍수 위험도 예측모형 연구" 한국산업경영시스템학회 37 (37): 91-95, 2014

      5 최상열, "데이터마이닝을 이용한 단기부하예측" 한국조명.전기설비학회 21 (21): 126-133, 2007

      6 박영진, "뉴로-퍼지 모델 기반 전력 수요 예측 시스템: 시간,일간,주간 단위 예측" 한국지능시스템학회 14 (14): 533-538, 2004

      7 Box, E. P., "Time Series Analysis : Forecasting and Control" Wiley 2015

      8 Cheol-Hong Kim, "Short-term Electric Load Forecasting Using Data Mining Technique" 대한전기학회 7 (7): 807-813, 2012

      9 Ministry of Governmen Legislation, "Procedure of forecasting power demand" National Law 2011

      10 Kim, C. H., "Forecasting of Domestic Power Demand using Multiple Seasonal Exponential Smoothing Techniques, The annual report of Korea Enright Economics Institute" 2013

      11 Lee, H.R., "Electricity Demand Forecasting based on Machine Learning Algorithms" Korea Academic Association of Business Administration

      12 Oh, H. S., "A comparison of technological growth models" 22 (22): 51-68, 1994

      13 Korea Power Exchange, "A Study on the criteria of the electricity demand forecast evaluation and the confidence interval, annual report of 2011"

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-11-29 학회명변경 영문명 : 미등록 -> KOREAN SOCIETY OF INDUSTRIAL AND SYSTEMS ENGINEERING KCI등재
      2021-11-25 학술지명변경 외국어명 : Journal of Society of Korea Industrial and Systems Engineering -> Journal of Korean Society of Industrial and Systems Engineering KCI등재
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2019-12-04 학술지명변경 한글명 : 산업경영시스템학회지 -> 한국산업경영시스템학회지
      외국어명 : Journal of the Society of Korea Industrial and Systems Engineering -> Journal of Society of Korea Industrial and Systems Engineering
      KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.34 0.34 0.3
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.28 0.28 0.37 0.16
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼