RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      원근투영법 기반의 PTZ 카메라를 이용한 머리자세 추정 = Head Pose Estimation Based on Perspective Projection Using PTZ Camera

      한글로보기

      https://www.riss.kr/link?id=A105549627

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 논문에서는 PTZ 카메라를 이용한 머리자세추정 방법에 대하여 서술한다. 회전 또는 이동에 의하여 카메라의 외부인자가 변경되면, 추정된 얼굴자세도 변한다. 본 논문에는 PTZ 카메라의 회전과 위치 변화에 독립적으로 머리자세를 추정하는 새로운 방법을 제안한다. 제안하는 방법은 얼굴검출, 특징추출 그리고 자세추정으로 이루어진다. 얼굴검출은 MCT특징을 이용해 검출하고, 얼굴 특징추출은 회귀트리 방법을 이용해 추출하고, 머리자세 추정은 POSIT 알고리즘을 사용한다. 기존의 POSIT 알고리즘은 카메라의 회전을 고려하지 않지만, 카메라의 외부인자 변화에도 강건하게 머리자세를 추정하기 위하여 본 논문은 원근투영법에 기반하여 POSIT를 개선한다. 실험을 통하여 본 논문에서 제안하는 방법이 기존의 방법 보다 RMSE가 약 $0.6^{\circ}$ 개선되는 것을 확인했다.
      번역하기

      본 논문에서는 PTZ 카메라를 이용한 머리자세추정 방법에 대하여 서술한다. 회전 또는 이동에 의하여 카메라의 외부인자가 변경되면, 추정된 얼굴자세도 변한다. 본 논문에는 PTZ 카메라의 회...

      본 논문에서는 PTZ 카메라를 이용한 머리자세추정 방법에 대하여 서술한다. 회전 또는 이동에 의하여 카메라의 외부인자가 변경되면, 추정된 얼굴자세도 변한다. 본 논문에는 PTZ 카메라의 회전과 위치 변화에 독립적으로 머리자세를 추정하는 새로운 방법을 제안한다. 제안하는 방법은 얼굴검출, 특징추출 그리고 자세추정으로 이루어진다. 얼굴검출은 MCT특징을 이용해 검출하고, 얼굴 특징추출은 회귀트리 방법을 이용해 추출하고, 머리자세 추정은 POSIT 알고리즘을 사용한다. 기존의 POSIT 알고리즘은 카메라의 회전을 고려하지 않지만, 카메라의 외부인자 변화에도 강건하게 머리자세를 추정하기 위하여 본 논문은 원근투영법에 기반하여 POSIT를 개선한다. 실험을 통하여 본 논문에서 제안하는 방법이 기존의 방법 보다 RMSE가 약 $0.6^{\circ}$ 개선되는 것을 확인했다.

      더보기

      다국어 초록 (Multilingual Abstract)

      This paper describes a head pose estimation method using PTZ(Pan-Tilt-Zoom) camera. When the external parameters of a camera is changed by rotation and translation, the estimated face pose for the same head also varies. In this paper, we propose a new method to estimate the head pose independently on varying the parameters of PTZ camera. The proposed method consists of 3 steps: face detection, feature extraction, and pose estimation. For each step, we respectively use MCT(Modified Census Transform) feature, the facial regression tree method, and the POSIT(Pose from Orthography and Scaling with ITeration) algorithm. The existing POSIT algorithm does not consider the rotation of a camera, but this paper improves the POSIT based on perspective projection in order to estimate the head pose robustly even when the external parameters of a camera are changed. Through experiments, we confirmed that RMSE(Root Mean Square Error) of the proposed method improve $0.6^{\circ}$ less then the conventional method.
      번역하기

      This paper describes a head pose estimation method using PTZ(Pan-Tilt-Zoom) camera. When the external parameters of a camera is changed by rotation and translation, the estimated face pose for the same head also varies. In this paper, we propose a new...

      This paper describes a head pose estimation method using PTZ(Pan-Tilt-Zoom) camera. When the external parameters of a camera is changed by rotation and translation, the estimated face pose for the same head also varies. In this paper, we propose a new method to estimate the head pose independently on varying the parameters of PTZ camera. The proposed method consists of 3 steps: face detection, feature extraction, and pose estimation. For each step, we respectively use MCT(Modified Census Transform) feature, the facial regression tree method, and the POSIT(Pose from Orthography and Scaling with ITeration) algorithm. The existing POSIT algorithm does not consider the rotation of a camera, but this paper improves the POSIT based on perspective projection in order to estimate the head pose robustly even when the external parameters of a camera are changed. Through experiments, we confirmed that RMSE(Root Mean Square Error) of the proposed method improve $0.6^{\circ}$ less then the conventional method.

      더보기

      참고문헌 (Reference)

      1 Z., Feng, "Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR" 2008

      2 W. J. Wolfe, "The perspective view of three points" 66-73, 1991

      3 S. J. Miller, "The Method of Least Squares" 2006

      4 P. Martins, "Single view head pose estimation" 1652-1655, 2008

      5 G. Fanelli, "Real time head pose estimation with random regression forests" 617-624, 2011

      6 V. Kazemi, "One Millisecond Face Alignment with an Ensemble of Regression Trees" 1867-1874, 2014

      7 Y. Ohta, "Obtaining Surface Orientation from Texels Under Perspective Projection" 746-751, 1981

      8 R. Zabih, "Non-parametric Local Transforms for Computing Visual Correspondence" 151-158, 1994

      9 D. F. Dementhon, "Model-based object pose in 25 lines of code" 15 (15): 123-141, 1995

      10 B. Czuprynski, "High Accuracy Head Pose Tracking Survey" 407-420, 2014

      1 Z., Feng, "Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR" 2008

      2 W. J. Wolfe, "The perspective view of three points" 66-73, 1991

      3 S. J. Miller, "The Method of Least Squares" 2006

      4 P. Martins, "Single view head pose estimation" 1652-1655, 2008

      5 G. Fanelli, "Real time head pose estimation with random regression forests" 617-624, 2011

      6 V. Kazemi, "One Millisecond Face Alignment with an Ensemble of Regression Trees" 1867-1874, 2014

      7 Y. Ohta, "Obtaining Surface Orientation from Texels Under Perspective Projection" 746-751, 1981

      8 R. Zabih, "Non-parametric Local Transforms for Computing Visual Correspondence" 151-158, 1994

      9 D. F. Dementhon, "Model-based object pose in 25 lines of code" 15 (15): 123-141, 1995

      10 B. Czuprynski, "High Accuracy Head Pose Tracking Survey" 407-420, 2014

      11 T. Funahashi, "Hierarchical face tracking by using PTZ camera" 427-432, 2004

      12 C. Huang, "Head pose estimation based on random forests for multiclass classification" 934-937, 2010

      13 S. G. Kong, "Head Pose Estimation From a 2D Face Image Using 3D Face Morphing With Depth Parameters" 24 (24): 1801-1808, 2015

      14 Z. L. Sun, "Depth Estimation of Face Images Using the Nonlinear Least-Squares Model" 17-30, 2013

      15 T. F. Cootes, "Active Appearance Models" 681-685, 2001

      16 Y. Freund, "A decision-theoretic generalization of on-line learning and an application to boosting" 119-139, 1997

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2012-10-31 학술지명변경 한글명 : 소프트웨어 및 데이터 공학 -> 정보처리학회논문지. 소프트웨어 및 데이터 공학 KCI등재
      2012-10-10 학술지명변경 한글명 : 정보처리학회논문지B -> 소프트웨어 및 데이터 공학
      외국어명 : The KIPS Transactions : Part B -> KIPS Transactions on Software and Data Engineering
      KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2003-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2000-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.35 0.35 0.28
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.23 0.19 0.511 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼