RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      삼중항-삼중항 소멸에 의한 광에너지 상향전환 기술의 원리와 최신 연구현황 = Principle and Research Trends of Triplet-triplet Annihilation Upconversion

      한글로보기

      https://www.riss.kr/link?id=A104185386

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      삼중항-삼중항 소멸에 의한 광에너지 상향전환 기술(Triplet-triplet annihilation upconversion, TTA-UC)은 특정 에너지 조건을 만족시키는 유기물들의 조합에 의해 낮은 에너지의 광자를 높은 에너지의 ...

      삼중항-삼중항 소멸에 의한 광에너지 상향전환 기술(Triplet-triplet annihilation upconversion, TTA-UC)은 특정 에너지 조건을 만족시키는 유기물들의 조합에 의해 낮은 에너지의 광자를 높은 에너지의 광자로 변환시키는 특수한 광화학적 공정이다. TTA-UC는 태양광 스펙트럼 중 낮은 에너지 탓에 활용되지 못하고 소실되는 광자를 고 에너지의 광자로 변환시킴으로써 태양광에 기반한 광학기기들의 광에너지 전환효율을 획기적으로 향상시킬 수 있는 기술로 평가받고 있다. 본 논문은 아직 국내학계에 생소한 연구분야인 TTA-UC현상의 광화학적 원리와 특징을 소개하고, TTA-UC와 관련한 최신 연구동향과 응용분야, 그리고 향후 연구방향을 고찰하였다.

      더보기

      다국어 초록 (Multilingual Abstract)

      Triplet-triplet annihilation upconversion (TTA-UC) is a special photochemical process that converts low energy photons to higher energy photon via combination of organic chemicals which fulfill specific energetic criteria. TTA-UC has been known as att...

      Triplet-triplet annihilation upconversion (TTA-UC) is a special photochemical process that converts low energy photons to higher energy photon via combination of organic chemicals which fulfill specific energetic criteria. TTA-UC has been known as attractive technology that is able to enhance energy conversion efficiency of the photonic devices based on sunlight, which is achieved by conversion of wasted low energy photons in solar spectrum into higher energy photon. In the present paper, we introduced the photochemical mechanism and characteristics of TTA-UC phe-nomenon, which is yet unfamiliar to the domestic academia, and investigated recent research status, application, and future research directions of TTA-UC technology.

      더보기

      참고문헌 (Reference)

      1 정경열, "분무열분해법으로 제조된 SrAl2O4:Ho3+ 녹색 형광체의 발광특성" 한국화학공학회 53 (53): 620-626, 2015

      2 Do-Hwan Kim, "Visible up-conversion luminescence of CaWO4 : Er3+,Yb3+ and emission enhancement by tri-doping of Li+ ions" 한국화학공학회 29 (29): 519-524, 2012

      3 Zhao, W., "Upconverted Emission from Pyrene and Di-tert-butylpyrene Using Ir(ppy)3 as Triplet Sensitizer" 110 : 11440-11445, 2006

      4 Khnayzer, R. S., "Upconversion-powered Photoelectrochemistry" 48 : 209-211, 2012

      5 Wang, F., "Upconversion Multicolor Fine-tuning:Visible to Near-infrared Emission from Lanthanide-doped NaYF4Nanoparticles" 130 (130): 5642-5643, 2008

      6 Kwon, O. S., "Triplet−triplet Annihilation Upconversion in CdS-decorated SiO2 Nanocapsules for Sub-bandgap Photocatalysis" 7 : 318-325, 2015

      7 Jiang, X., "Triplet−triplet Annihilation Photon Upconversion in Polymer Thin Film: Sensitizer Design" 8 : 11441-11449, 2016

      8 Wohnhaas, C., "Triplet–triplet Annihilation Upconversion Based Nanocapsules for Bioimaging Under Excitation by Red and Deepred Light" 13 : 1422-1430, 2013

      9 Singh-Rachford, T. N., "Triplet Sensitized Red-to-blue Photon Upconversion" 1 : 195-200, 2010

      10 Kouno, H., "Triplet Energy Migration-based Photon Upconversion by Amphiphilic Molecular Assemblies in Aerated Water" 7 : 5224-, 2016

      1 정경열, "분무열분해법으로 제조된 SrAl2O4:Ho3+ 녹색 형광체의 발광특성" 한국화학공학회 53 (53): 620-626, 2015

      2 Do-Hwan Kim, "Visible up-conversion luminescence of CaWO4 : Er3+,Yb3+ and emission enhancement by tri-doping of Li+ ions" 한국화학공학회 29 (29): 519-524, 2012

      3 Zhao, W., "Upconverted Emission from Pyrene and Di-tert-butylpyrene Using Ir(ppy)3 as Triplet Sensitizer" 110 : 11440-11445, 2006

      4 Khnayzer, R. S., "Upconversion-powered Photoelectrochemistry" 48 : 209-211, 2012

      5 Wang, F., "Upconversion Multicolor Fine-tuning:Visible to Near-infrared Emission from Lanthanide-doped NaYF4Nanoparticles" 130 (130): 5642-5643, 2008

      6 Kwon, O. S., "Triplet−triplet Annihilation Upconversion in CdS-decorated SiO2 Nanocapsules for Sub-bandgap Photocatalysis" 7 : 318-325, 2015

      7 Jiang, X., "Triplet−triplet Annihilation Photon Upconversion in Polymer Thin Film: Sensitizer Design" 8 : 11441-11449, 2016

      8 Wohnhaas, C., "Triplet–triplet Annihilation Upconversion Based Nanocapsules for Bioimaging Under Excitation by Red and Deepred Light" 13 : 1422-1430, 2013

      9 Singh-Rachford, T. N., "Triplet Sensitized Red-to-blue Photon Upconversion" 1 : 195-200, 2010

      10 Kouno, H., "Triplet Energy Migration-based Photon Upconversion by Amphiphilic Molecular Assemblies in Aerated Water" 7 : 5224-, 2016

      11 Kim, J. H., "Triple-emulsion Microcapsules for Highly Efficient Multispectral Upconversion in the Aqueous Phase" 2 : 633-638, 2015

      12 Yakutkin, V., "Towards the IR Limit of the Triplet-triplet Annihilation-supported up-conversion: Tetraanthraporphyrin" 14 : 9846-9850, 2008

      13 Singh-Rachford, T. N., "Supra-nanosecond Dynamics of a Red-to-blue Photon Upconversion System" 48 (48): 2541-2548, 2009

      14 Monguzzi, A., "Solid-state Sensitized Upconversion in Polyacrylate Elastomers" 120 : 2609-2614, 2016

      15 Thevenaz, D. C., "Single-component Upconverting Polymeric Nanoparticles" 37 : 826-832, 2016

      16 Parker, C. A., "Sensitised Anti-stokes Delayed Fluorescence" 386-387, 1962

      17 Turshatov, A., "Room-temperature High-efficiency Solidstate Triplet−triplet Annihilation Up-conversion in Amorphous Poly(olefin sulfone)s" 9 : 8280-8286, 2017

      18 Kim, J. H., "Red-to-blue/cyan/green Upconverting Microcapsules for Aqueousand Dryphase Color Tuning and Magnetic Sorting" 1 : 382-388, 2014

      19 Kim, J. -H., "Red-to-Blue/Cyan/Green Upconvertiong Microcapsules for Aqueous- and Dry-phase Color Tuning and Magnetic Sorting" 1 (1): 382-388, 2014

      20 Yanai, N., "Recent Emergence of Photon Upconversion Based on Triplet Energy Migration in Molecular Assemblies" 52 : 5354-, 2016

      21 Mahato, P., "Preorganized Chromophores Facilitate Triplet Energy Migration, Annihilation and Upconverted Singlet Energy Collection" 138 : 6541-6549, 2016

      22 Kim, H. I., "Plasmon-enhanced sub-bandgap Photocatalysis via Triplet−triplet Annihilation Upconversion for Volatile Organic Compound Degradation" 50 : 11184-11192, 2016

      23 Oldenburg, M., "Photon Upconversion at Crystalline Organic–organic Heterojunctions" 28 : 8477-8482, 2016

      24 Singh-Rachford, T. N., "Photon Upconversion Based on Sensitized Triplet−triplet Annihilation" 254 : 2560-2573, 2010

      25 Li, C., "Photocurrent Enhancement from Solid-state Triplet−triplet Annihilation Upconversion of Low-intensity, Lowenergy Photons" 3 : 784-790, 2016

      26 Schulze, T. F., "Photochemical Upconversion:Present Status and Prospects for Its Application to Solar Energy Conversion" 8 : 103-125, 2015

      27 Parker, C. A., "P-type Delayed Fluorescence from Ionic Species and Aromatic Hydrocarbons" 311-319, 1964

      28 Cheng, Y. Y., "On the Efficiency Limit of Triplet−triplet Annihilation for Photochemical Upconversion" 12 : 66-71, 2010

      29 Islangulov, R. R., "Noncoherent Low-power Upconversion in Solid Polymer Films" 129 : 12652-12653, 2007

      30 Turshatov, A., "Micellar Carrier for Triplet–triplet Annihilation-assisted Photon Energy Upconversion in a Water Environment" 13 : 2011

      31 McCusker, C. E., "Materials Integrating Photochemical Upconversion" 374 : 19-43, 2016

      32 Monguzzi, A., "Low-power-photon Up-conversion in Dual-dye-loaded Polymer Nanoparticles" 22 : 139-143, 2012

      33 Merkel, P. B., "Low-power Green-to-blue and Blue-to-UV Upconversion in Rigid Polymer Films" 129 : 303-306, 2009

      34 Singh-Rachford, T. N., "Low Power Visibleto-UV Upconversion" 113 : 5912-5917, 2009

      35 Islangulov, R. R., "Low Power Upconversion Using MLCT Sensitizers" 30 : 3776-3778, 2005

      36 Cheng, Y. Y., "Kinetic Analysis of Photochemical Upconversion by Triplet−triplet Annihilation: Beyond Any Spin Statistical Limit" 1 : 1795-1799, 2010

      37 Singh-Rachford, T. N., "Influence of Temperature on Low-power Upconversion in Rubbery Polymer Blends" 131 : 12007-12014, 2009

      38 Yanai, N., "Increased Vis-to-UV Upconversion Performance by Energy Level Matching Between a TADF Donor and High Triplet Energy Acceptors" 4 : 6447-6451, 2016

      39 Cheng, Y. Y., "Increased Upconversion Performance for Thin Film Solar Cells: a Trimolecular Composition" 7 : 559-, 2016

      40 Cheng, Y. Y., "Increased Upconversion Performance for Thin Film Solar Cells: a Trimolecular Composition" 7 : 559-568, 2016

      41 Tian, B., "In vivo Biodistribution and Toxicity Assessment of Triplet−triplet Annihilation-based Upconversion Nanocapsules" 112 : 10-19, 2017

      42 Cheng, Y. Y., "Improving the Light-harvesting of Amorphous Silicon Solar Cells with Photo chemical Upconversion" 5 : 6953-6959, 2012

      43 Askes, S. H. C., "Imaging the Lipid Bilayer of Giant Unilamellar Vesicles Using Red-to-blue Light Upconversion" 51 : 9137-9140, 2015

      44 Kim, J. H., "High Efficiency Low-power Upconverting Soft Materials" 24 : 2250-2252, 2012

      45 Kim, H. I., "Harnessing Low Energy Photons (635 nm) for the Production of H2O2 Using Upconversion Nanohybrid Photocatalysts" 9 : 1063-1073, 2016

      46 Haefele, A., "Getting to the (square) Root of the Problem: How to Make Noncoherent Pumped Upconversion Linear" 3 : 299-303, 2012

      47 Tanaka, K., "Environment-responsive Upconversion Based on Dendrimer-supported Efficient Triplet–triplet Annihilation in Aqueous Media" 46 : 4378-4380, 2010

      48 Hagstrom, A. L., "Enhanced Triplet−triplet Annihilation Upconversion in Dual-sensitizer Systems: Translating Broadband Light Absorption to Practical Solid-state Materials" 4 : 127-137, 2017

      49 Liu, Q., "Enhanced Precision of Nanoparticle Phototargeting in vivo at a Safe Irradiance" 16 : 4516-4520, 2016

      50 Cates, E. L., "Engineering Light: Advances in Wavelength Conversion Materials for Energy and Environmental Technologies" 46 (46): 12316-12328, 2012

      51 Kim, J. H., "Encapsulated Triplet−triplet Annihilation-based Upconversion in the Aqueous Phase for Sub-band-gap Semiconductor Photocatalysis" 134 : 17478-17481, 2012

      52 Kamada, K., "Efficient Triplet–triplet Annihilation Upconversion in Binary Crystalline Solids Fabricated Via Solution Casting and Operated in Air" 4 : 83-, 2017

      53 Schulze, T. F., "Efficiency Enhancement of Organic and Thin-film Silicon Solar Cells with Photochemical Upconversion" 116 : 22794-22801, 2012

      54 Nattestad, A., "Dye-sensitized Solar Cell with Integrated Triplet–triplet Annihilation Upconversion System" 4 (4): 2073-2078, 2013

      55 Kwon, O. S., "Dual-color Emissive Upconversion Nanocapsules for Differential Cancer Bioimaging in vivo" 10 : 1512-1521, 2016

      56 Peng, J., "Developing Efficient Heavy-atom-free Photosensitizers Applicable to TTA Upconversion in Polymer Films" 7 : 1233-1237, 2016

      57 Singh-Rachford, T. N., "Boron Dipyrromethene Chromophores: Next Generation Triplet Acceptors/annihilators for Low Power Upconversion Schemes" 130 : 16164-16165, 2008

      58 Liu, Q., "Blue-emissive Upconversion Nanoparticles for Low-power-excited Bioimaging in Vivo" 134 : 5390-5397, 2012

      59 Wohnhaas, C., "Annihilation Upconversion in Cells by Embedding the Dye System in Polymeric Nanocapsules" 11 : 772-778, 2011

      60 Ye, C., "A New Medium for Triplet–triplet Annihilated Upconversion and Photocatalytic Application" 18 : 3430-, 2016

      61 Liu, Q., "A General Strategy for Biocompatible, High-effective Upconversion Nanocapsules Based on Triplet−triplet Annihilation" 135 : 5029-5037, 2013

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-12-02 학술지명변경 한글명 : 화학공학 -> Korean Chemical Engineering Research(HWAHAK KONGHAK) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-08-25 학술지명변경 외국어명 : Korean Chem. Eng. Res. -> Korean Chemical Engineering Research KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-09-27 학회명변경 영문명 : The Korean Institute Of Chemical Engineers -> The Korean Institute of Chemical Engineers KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.43 0.43 0.4
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.37 0.35 0.496 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼