RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI우수등재

      Feature selection in the semivarying coefficient LS-SVR

      한글로보기

      https://www.riss.kr/link?id=A103672388

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper we propose a feature selection method identifying important features in the semivarying coefficient model. One important issue in semivarying coefficient model is how to estimate the parametric and nonparametric components. Another issue is how to identify important features in the varying and the constant effects. We propose a feature selection method able to address this issue using generalized cross validation functions of the varying coefficient least squares support vector regression (LS-SVR) and the linear LS-SVR. Numerical studies indicate that the proposed method is quite effective in identifying important features in the varying and the constant effects in the semivarying coefficient model.
      번역하기

      In this paper we propose a feature selection method identifying important features in the semivarying coefficient model. One important issue in semivarying coefficient model is how to estimate the parametric and nonparametric components. Another issue...

      In this paper we propose a feature selection method identifying important features in the semivarying coefficient model. One important issue in semivarying coefficient model is how to estimate the parametric and nonparametric components. Another issue is how to identify important features in the varying and the constant effects. We propose a feature selection method able to address this issue using generalized cross validation functions of the varying coefficient least squares support vector regression (LS-SVR) and the linear LS-SVR. Numerical studies indicate that the proposed method is quite effective in identifying important features in the varying and the constant effects in the semivarying coefficient model.

      더보기

      참고문헌 (Reference)

      1 Hastie, T., "Varying-coeffcient models" 55 : 757-796, 1993

      2 Shim, J., "Varying coeffcient modeling via least squares support vector regression" 161 : 254-259, 2015

      3 Xue, L., "Variable selection in high-dimensional varying-coeffcient models with global optimality" 13 : 1973-1998, 2012

      4 Vapnik, V., "The nature of statistical learning theory" Springer 1995

      5 Tibshirani, R., "The lasso method for variable selection in the Cox model" 16 : 385-395, 1997

      6 Fan, J., "Statistical methods with varying coeffcient models" 1 : 179-195, 2008

      7 Vapnik, V., "Statistical Learning Theory" Wiley 1998

      8 Craven, P., "Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation" 31 : 377-403, 1979

      9 Li, Q., "Smooth varying-coeffcient estimation and inference for qualitative and quantitative data" 26 : 1607-1637, 2010

      10 황창하, "Robust varying coe cient model using L1 regularization" 한국데이터정보과학회 27 (27): 1059-1066, 2016

      1 Hastie, T., "Varying-coeffcient models" 55 : 757-796, 1993

      2 Shim, J., "Varying coeffcient modeling via least squares support vector regression" 161 : 254-259, 2015

      3 Xue, L., "Variable selection in high-dimensional varying-coeffcient models with global optimality" 13 : 1973-1998, 2012

      4 Vapnik, V., "The nature of statistical learning theory" Springer 1995

      5 Tibshirani, R., "The lasso method for variable selection in the Cox model" 16 : 385-395, 1997

      6 Fan, J., "Statistical methods with varying coeffcient models" 1 : 179-195, 2008

      7 Vapnik, V., "Statistical Learning Theory" Wiley 1998

      8 Craven, P., "Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation" 31 : 377-403, 1979

      9 Li, Q., "Smooth varying-coeffcient estimation and inference for qualitative and quantitative data" 26 : 1607-1637, 2010

      10 황창하, "Robust varying coe cient model using L1 regularization" 한국데이터정보과학회 27 (27): 1059-1066, 2016

      11 Huang, J., "Regularized estimation in the accelerated failure time model with high dimensional covariates" Department of Statistics and Actuarial Science, The University of Iowa 2005

      12 Fan, J., "Profile likelihood inferences on semiparametric varying coeffcient partially linear models" 11 : 1031-1057, 2005

      13 Suykens, J. A. K., "Optimal control by least squares support vector machines" 14 : 23-35, 2001

      14 Hoover, D. R., "Nonparametric smoothing estimates of time-varying coeffcient models with longitudinal data" 85 : 809-822, 1998

      15 Zhang, W., "Local polynomial fitting in semivarying coeffcient models" 82 : 166-188, 2002

      16 Suykens, J. A. K., "Least squares support vector machine classifiers" 9 : 293-300, 1999

      17 Wooldridge, J. M., "Introductory econometrics: A modern approach" South-Western Cengage Learning 2012

      18 Mercer, J., "Functions of positive and negative type and their connection with theory of integral equations" 415-446, 1909

      19 Lee, Y. K., "Flexible generalized varying coeffcient regression models" 40 : 1906-1933, 2012

      20 Yang, L., "Estimation and testing for varying coeffcients in additive models with marginal integration" 101 : 1212-1227, 2006

      21 황창하, "Deep LS-SVM for regression" 한국데이터정보과학회 27 (27): 827-833, 2016

      22 Wu, C., "A penalized robust semiparametric approach for gene-environment interactions" 34 : 4016-4030, 2015

      23 Sauerbrei, W., "A bootstrap resampling procedure for model building : Application to the Cox regression model" 11 : 2093-2099, 1992

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 계속평가 신청대상 (등재유지)
      2017-01-01 평가 우수등재학술지 선정 (계속평가)
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 유지 (등재후보2차) KCI등재후보
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.18 1.18 1.07
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.01 0.91 0.911 0.35
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼