RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      Morphology and physical properties of graphene nanoplatelet embedded poly(vinyl alcohol) composite aerogel

      한글로보기

      https://www.riss.kr/link?id=A104339487

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      Three dimensional carbon nanomaterial reinforced composite aerogel was fabricated using a freezedrying method. Graphene nanoplatelets (GNPs) were used as the reinforcement and poly vinyl alcohol (PVA) as the organic binding material to produce the composite aerogel. Two different methods were employed to control the internal structure of the aerogel: a variation of solvent composition and the formation of cross-linking. The internal structure of the aerogel was affected by the types and composition of the solvent. In addition, the subsequent cross-linking of the aerogel influenced the morphology and physical properties. It is expected that this study can provide a simple and efficient way to control the internal structure and resulting properties of the GNP aerogel.
      번역하기

      Three dimensional carbon nanomaterial reinforced composite aerogel was fabricated using a freezedrying method. Graphene nanoplatelets (GNPs) were used as the reinforcement and poly vinyl alcohol (PVA) as the organic binding material to produce the com...

      Three dimensional carbon nanomaterial reinforced composite aerogel was fabricated using a freezedrying method. Graphene nanoplatelets (GNPs) were used as the reinforcement and poly vinyl alcohol (PVA) as the organic binding material to produce the composite aerogel. Two different methods were employed to control the internal structure of the aerogel: a variation of solvent composition and the formation of cross-linking. The internal structure of the aerogel was affected by the types and composition of the solvent. In addition, the subsequent cross-linking of the aerogel influenced the morphology and physical properties. It is expected that this study can provide a simple and efficient way to control the internal structure and resulting properties of the GNP aerogel.

      더보기

      참고문헌 (Reference)

      1 J. Zou, "Ultralight multiwalled carbon nanotube aerogel" 4 : 7293-7302, 2010

      2 H. Hu, "Ultralight and highly compressible graphene aerogels" 25 : 2219-2223, 2013

      3 S. Deville, "Tomsia, Ice-templated porous alumina structures" 55 : 1965-1974, 2007

      4 L. Li, "Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature" 87 : 1638-1645, 2015

      5 Z. Chen, "Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition" 10 : 424-428, 2011

      6 B. Wicklein, "Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide" 10 : 277-283, 2015

      7 R. Skochdopole, "The thermal conductivity of foamed plastics" 57 : 55-59, 1961

      8 F. Senti, "The crystal structure of rhombohedral acetamide" 62 : 2008-2019, 1940

      9 D. Hall, "The crystal structure of formamidoxime" 9 : 108-112, 1956

      10 M. A. Worsley, "Synthesis of graphene aerogel with high electrical conductivity" 132 : 14067-14069, 2010

      1 J. Zou, "Ultralight multiwalled carbon nanotube aerogel" 4 : 7293-7302, 2010

      2 H. Hu, "Ultralight and highly compressible graphene aerogels" 25 : 2219-2223, 2013

      3 S. Deville, "Tomsia, Ice-templated porous alumina structures" 55 : 1965-1974, 2007

      4 L. Li, "Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature" 87 : 1638-1645, 2015

      5 Z. Chen, "Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition" 10 : 424-428, 2011

      6 B. Wicklein, "Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide" 10 : 277-283, 2015

      7 R. Skochdopole, "The thermal conductivity of foamed plastics" 57 : 55-59, 1961

      8 F. Senti, "The crystal structure of rhombohedral acetamide" 62 : 2008-2019, 1940

      9 D. Hall, "The crystal structure of formamidoxime" 9 : 108-112, 1956

      10 M. A. Worsley, "Synthesis of graphene aerogel with high electrical conductivity" 132 : 14067-14069, 2010

      11 M. A. Worsley, "Synthesis and characterization of highly crystalline graphene aerogels" 8 : 11013-11022, 2014

      12 J. Li, "Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor" 158 : 784-788, 2006

      13 S. Kim, "Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics" 40 : 725-731, 2005

      14 V. F. Petrenko, "Physics of Ice" Clarendon Press 1999

      15 S. Kabiri, "Outstanding adsorption performance of graphene-carbon nanotube aerogels for continuous oil removal" 80 : 523-533, 2014

      16 H. Sun, "Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels" 25 : 2554-2560, 2013

      17 Z. -L. Wang, "In situ fabrication of porous graphene electrodes for high-performance energy storage" 7 : 2422-2430, 2013

      18 S. Ye, "Highly elastic graphene oxideeepoxy composite aerogels via simple freeze-drying and subsequent routine curing" 1 : 3495-3502, 2013

      19 Q. Zheng, "Green synthesis of polyvinyl alcohol (PVA)ecellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents" 2 : 3110-3118, 2014

      20 H. Fukushima, "Graphite nanoplatelets as reinforcements for polymers:structural and electrical properties" Purdue University 2002

      21 W. Yuan, "Graphene-based gas sensors" 1 : 10078-10091, 2013

      22 K. H. Kim, "Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue" 7 : 562-566, 2012

      23 X. H. Qin, "Electrospun nanofibers from crosslinked poly (vinyl alcohol) and its filtration efficiency" 109 : 951-956, 2008

      24 B.J. Berne, "Dynamic Light Scattering: with Applications to Chemistry, Biology, and Physics" Courier Corporation 1976

      25 M.S. Peresin, "Crosslinked PVA nanofibers reinforced with cellulose nanocrystals: water interactions and thermomechanical properties" 131 : 2014

      26 M. B. Bryning, "Carbon nanotube aerogels" 19 : 661-664, 2007

      27 H. Bi, "Carbon fiber aerogel made from raw cotton: a novel, efficient and recyclable sorbent for oils and organic solvents" 25 : 5916-5921, 2013

      28 Y. He, "An environmentally friendly method for the fabrication of reduced graphene oxide foam with a super oil absorption capacity" 260 : 796-805, 2013

      29 D. Kalpana, "A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor" 52 : 1309-1315, 2006

      30 H. Mark, "12 Volume Set, Encyclopedia of Polymer Science and Technology" John Wiley & Sons, Inc 2005

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2008-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2007-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.8 0.18 1.17
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.92 0.77 0.297 0.1
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼