RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      CNN을 활용한 램프 점등 이미지 균일도 정량화 방안 연구

      한글로보기

      https://www.riss.kr/link?id=A108510283

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The lighting image of a car lamp is one of the important factors influencing the exterior design of a car, but it is difficult to find an evaluation method for quantitatively evaluating the lighting image. If there is a method of quantitatively evalua...

      The lighting image of a car lamp is one of the important factors influencing the exterior design of a car, but it is difficult to find an evaluation method for quantitatively evaluating the lighting image. If there is a method of quantitatively evaluating how uniform the lighting image of the lamp is, it will be easy to manage the quality of the lighting image. This study attempted to determine whether it is possible to quantitatively evaluate the lighting image data of a car lamp using a deep learning algorithm that learned a good lighting image and a poor lighting image of a car lamp using deep learning of image data. CNN algorithms were used for deep learning of image data, and learning was conducted using images of various automobile position and tail lamp lighting. The learned algorithm classified good lighting images and poor lighting image data with a probability of more than 90% for the new lighting image data, and was able to provide lighting uniformity scores for the image data. The method of learning deep learning algorithms could help develop evaluation methods that are difficult to develop in conventional ways or quantitative evaluation methods for complex data.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. 서론
      • 2. 본론
      • 4. 결론
      • References
      • Abstract
      • 1. 서론
      • 2. 본론
      • 4. 결론
      • References
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼